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4
Counterfactuals and Their
Applications

4.1 Counterfactuals

While driving home last night, I came to a fork in the road, where I had to make a choice: to
take the freeway (X = 1) or go on a surface street named Sepulveda Boulevard (X = 0). I took
Sepulveda, only to find out that the traffic was touch and go. As I arrived home, an hour later,
I said to myself: “Gee, I should have taken the freeway.”

What does it mean to say, “I should have taken the freeway”? Colloquially, it means, “If I had
taken the freeway, I would have gotten home earlier.” Scientifically, it means that my mental
estimate of the expected driving time on the freeway, on that same day, under the identical
circumstances, and governed by the same idiosyncratic driving habits that I have, would have
been lower than my actual driving time.

This kind of statement—an “if” statement in which the “if” portion is untrue or
unrealized—is known as a counterfactual. The “if” portion of a counterfactual is called the
hypothetical condition, or more often, the antecedent. We use counterfactuals to emphasize
our wish to compare two outcomes (e.g., driving times) under the exact same conditions,
differing only in one aspect: the antecedent, which in our case stands for “taking the freeway”
as opposed to the surface street. The fact that we know the outcome of our actual decision is
important, because my estimated driving time on the freeway after seeing the consequences
of my actual decision (to take Sepulveda) may be totally different from my estimate prior to
seeing the consequence. The consequence (1 hour) may provide valuable evidence for the
assessment, for example, that the traffic was particularly heavy on that day, and that it might
have been due to a brush fire. My statement “I should have taken the freeway” conveys the
judgment that whatever mechanisms impeded my speed on Sepulveda would not have affected
the speed on the freeway to the same extent. My retrospective estimate is that a freeway drive
would have taken less than 1 hour, and this estimate is clearly different than my prospective
estimate was, when I made the decision prior to seeing the consequences—otherwise, I would
have taken the freeway to begin with.
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If we try to express this estimate using do-expressions, we come to an impasse. Writing

E(driving time|do(freeway), driving time = 1 hour)

leads to a clash between the driving time we wish to estimate and the actual driving time
observed. Clearly, to avoid this clash, we must distinguish symbolically between the following
two variables:

1. Actual driving time
2. Hypothetical driving time under freeway conditions when actual surface driving time is

known to be 1 hour.

Unfortunately, the do-operator is too crude to make this distinction. While the do-operator
allows us to distinguish between two probabilities, P(driving time|do(freeway)) and
P(driving time|do(Sepulveda)), it does not offer us the means of distinguishing between
the two variables themselves, one standing for the time on Sepulveda, the other for the
hypothetical time on the freeway. We need this distinction in order to let the actual driving
time (on Sepulveda) inform our assessment of the hypothetical driving time.

Fortunately, making this distinction is easy; we simply use different subscripts to label the
two outcomes. We denote the freeway driving time by YX=1 (or Y1, where context permits) and
Sepulveda driving time by YX=0 (or Y0). In our case, since Y0 is the Y actually observed, the
quantity we wish to estimate is

E(YX=1|X = 0,Y = Y0 = 1) (4.1)

The novice student may feel somewhat uncomfortable at the sight of the last expression,
which contains an eclectic mixture of three variables: one hypothetical and two observed,
with the hypothetical variable YX=1 predicated upon one event (X = 1) and conditioned upon
the conflicting event, X = 0, which was actually observed. We have not encountered such a
clash before. When we used the do-operator to predict the effect of interventions, we wrote
expressions such as

E[Y|do(X = x)] (4.2)

The Y in this expression is predicated upon the event X = x. With our new notation, the
expression might as well have been written E[YX=x]. But since all variables in this expression
were measured in the same world, there is no need to abandon the do-operator and invoke
counterfactual notation.

We run into problems with counterfactual expressions like (4.1) because YX=1 = y and X = 0
are—and must be—events occurring under different conditions, sometimes referred to as “dif-
ferent worlds.” This problem does not occur in intervention expressions, because Eq. (4.1)
seeks to estimate our total drive time in a world where we chose the freeway, given that the
actual drive time (in the world where we chose Sepulveda) was 1 hour, whereas Eq. (4.2) seeks
to estimate the expected drive time in a world where we chose the freeway, with no reference
whatsoever to another world.
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In Eq. (4.1), however, the clash prevents us from reducing the expression to a do-expression,
which means that it cannot be estimated from interventional experiments. Indeed, a random-
ized controlled experiment on the two decision options will never get us the estimate we want.
Such experiments can give us E[Y1] = E[Y|do(freeway)] and E[Y0] = E[Y|do(Sepulveda)], but
the fact that we cannot take both the freeway and Sepulveda simultaneously prohibits us from
estimating the quantity we wish to estimate, that is, the conditional expectation E[Y1|X = 0,
Y = 1]. One might be tempted to circumvent this difficulty by measuring the freeway time at a
later time, or of another driver, but then conditions may change with time, and the other driver
may have different driving habits than I. In either case, the driving time we would be measuring
under such surrogates will only be an approximation of the one we set out to estimate, Y1, and
the degree of approximation would vary with the assumptions we can make on how similar
those surrogate conditions are to my own driving time had I taken the freeway. Such approx-
imations may be appropriate for estimating the target quantity under some circumstances, but
they are not appropriate for defining it. Definitions should accurately capture what we wish to
estimate, and for this reason, we must resort to a subscript notation, Y1, with the understanding
that Y1 is my “would-be” driving time, had I chosen the freeway at that very juncture of history.

Readers will be pleased to know that their discomfort with the clashing nature of Eq. (4.1)
will be short-lived. Despite the hypothetical nature of the counterfactual Y1, the structural
causal models that we have studied in Part Two of the book will prove capable not only of
computing probabilities of counterfactuals for any fully specified model, but also of estimating
those probabilities from data, when the underlying functions are not specified or when some
of the variables are unmeasured.

In the next section, we detail the methods for computing and estimating properties of
counterfactuals. Once we have done that, we’ll use those methods to solve all sorts of
complex, seemingly intractable problems. We’ll use counterfactuals to determine the efficacy
of a job training program by figuring out how many enrollees would have gotten jobs had
they not enrolled; to predict the effect of an additive intervention (adding 5 mg/l of insulin
to a group of patients with varying insulin levels) from experimental studies that exercised
a uniform intervention (setting the group of patients’ insulin levels to the same constant
value); to ascertain the likelihood that an individual cancer patient would have had a different
outcome, had she chosen a different treatment; to prove, with a sufficient probability, whether
a company was discriminating when they passed over a job applicant; and to suss out,
via analysis of direct and indirect effects, the efficacy of gender-blind hiring practices on
rectifying gender disparities in the workforce.

All this and more, we can do with counterfactuals. But first, we have to learn how to define
them, how to compute them, and how to use them in practice.

4.2 Defining and Computing Counterfactuals

4.2.1 The Structural Interpretation of Counterfactuals

We saw in the subsection on interventions that structural causal models can be used to predict
the effect of actions and policies that have never been implemented before. The action of setting
a variable, X, to value x is simulated by replacing the structural equation for X with the equation
X = x. In this section, we show that by using the same operation in a slightly different context,
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we can use SEMs to define what counterfactuals stand for, how to read counterfactuals from a
given model, and how probabilities of counterfactuals can be estimated when portions of the
models are unknown.

We begin with a fully specified model M , for which we know both the functions {F} and 
the values of all exogenous variables. In such a deterministic model, every assignment U = u 
to the exogenous variables corresponds to a single member of, or “unit” in a population, or to a 
“situation” in nature. The reason for this correspondence is as follows: Each assignment U = u 
uniquely determines the values of all variables in V . Analogously, the characteristics of each 
individual “unit” in a population have unique values, depending on that individual’s identity. If 
the population is “people,” these characteristics include salary, address, education, propensity 
to engage in musical activity, and all other properties we associate with that individual at any 
given time. If the population is “agricultural lots,” these characteristics include soil content, 
surrounding climate, and local wildlife, among others. There are so many of these defining 
properties that they cannot all possibly be included in the model, but taken all together, 
they uniquely distinguish each individual and determine the values of the variables we do 
include in the model. It is in this sense that every assignment U = u corresponds to a single 
member or “unit” in a population, or to a “situation” in nature.

For example, if U = u stands for the defining characteristics of an individual named Joe,
and X stands for a variable named “salary,” then X(u) stands for Joe’s salary. If U = u stands
for the identity of an agricultural lot and Y stands for the yield measured in a given season,
then Y(u), stands for the yield produced by lot U = u in that season.

Consider now the counterfactual sentence, “Y would be y had X been x, in situation U = u,”
denoted Yx(u)= y, where Y and X are any two variables in V . The key to interpreting such a
sentence is to treat the phrase “had X been x” as an instruction to make a minimal modifica-
tion in the current model so as to establish the antecedent condition X = x, which is likely to
conflict with the observed value of X,X(u). Such a minimal modification amounts to replac-
ing the equation for X with a constant x, which may be thought of as an external intervention
do(X = x), not necessarily by a human experimenter. This replacement permits the constant x
to differ from the actual value of X (namely, X(u)) without rendering the system of equations
inconsistent, and in this way, it allows all variables, exogenous as well as endogenous, to serve
as antecedents to other variables.

We demonstrate this definition on a simple causal model consisting of just three variables,
X,Y ,U, and defined by two equations:

X = aU (4.3)

Y = bX + U (4.4)

We first compute the counterfactual Yx(u), that is, what Y would be had X been x, in situation
U = u. Replacing the first equation with X = x gives the “modified” model Mx:

X = x

Y = bX + U

Substituting U = u and solving for Y gives

Yx(u) = bx + u
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Table 4.1 The values attained by X(u),Y(u),Yx(u), and Xy(u) in the linear model of Eqs. (4.3)
and (4.4)

u X(u) Y(u) Y1(u) Y2(u) Y3(u) X1(u) X2(u) X3(u)

1 1 2 2 3 4 1 1 1
2 2 4 3 4 5 2 2 2
3 3 6 4 5 6 3 3 3

which is expected, since the meaning of the structural equation Y = bX + U is, exactly “the
value that Nature assigns to Y must be U plus b times the value assigned to X.” To demonstrate
a less obvious result, let us examine the counterfactual Xy(u), that is, what X would be had Y
been y in situation U = u. Here, we replace the second equation by the constant Y = y and,
solving for X, we get Xy(u) = au, which means that X remains unaltered by the hypothetical
condition “had Y been y.” This should be expected, if we interpret this hypothetical condition
as emanating from an external, albeit unspecified, intervention. It is less expected if we do
not invoke the intervention metaphor but merely treat Y = y as a spontaneous, unanticipated
change. The invariance of X under such a counterfactual condition reflects the intuition that
hypothesizing future eventualities does not alter the past.

Each SCM encodes within it many such counterfactuals, corresponding to the various val-
ues that its variables can take. To illustrate additional counterfactuals generated by this model,
let us assume that U can take on three values, 1, 2, and 3, and let a = b = 1 in Eqs. (4.3) and
(4.4). Table 4.1 gives the values of X(u),Y(u),Yx(u), and Xy(u) for several levels of x and y.
For example, to compute Y2(u) for u = 2, we simply solve a new set of equations, with X = 2
replacing X = aU, and obtain Y2(u) = 2 + u = 4. The computation is extremely simple, which
goes to show that, while counterfactuals are considered hypothetical, or even mystical from a
statistical view point, they emerge quite naturally from our perception of reality, as encoded
in structural models. Every structural equation model assigns a definitive value to every con-
ceivable counterfactual.

From this example, the reader may get the impression that counterfactuals are no different
than ordinary interventions, captured by the do-operator. Note, however, that, in this example
we computed not merely the probability or expected value of Y under one intervention or
another, but the actual value of Y under the hypothesized new condition X = x. For each sit-
uation U = u, we obtained a definite number, Yx(u), which stands for that hypothetical value
of Y in that situation. The do-operator, on the other hand, is only defined on probability dis-
tributions and, after deleting the factor P(xi|pai) from the product decomposition (Eq. (1.29)),
always delivers probabilistic results such as E[Y|do(x)]. From an experimentalist perspective,
this difference reflects a profound gap between population and individual levels of analysis;
the do(x)-operator captures the behavior of a population under intervention, whereas Yx(u)
describes the behavior of a specific individual, U = u, under such interventions. This differ-
ence has far-reaching consequences, and will enable us to define probabilities of concepts such
as credit, blame, and regret, which the do-operator is not able to capture.

4.2.2 The Fundamental Law of Counterfactuals

We are now ready to generalize the concept of counterfactuals to any structural model, M.
Consider any arbitrary two variables X and Y , not necessarily connected by a single equation.
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Let Mx stand for the modified version of M, with the equation of X replaced by X = x. The
formal definition of the counterfactual Yx(u) reads

Yx(u) = YMx
(u) (4.5)

In words: The counterfactual Yx(u) in model M is defined as the solution for Y in the “surgically
modified” submodel Mx. Equation (4.5) is one of the most fundamental principles of causal
inference. It allows us to take our scientific conception of reality, M, and use it to generate
answers to an enormous number of hypothetical questions of the type ”What would Y be had
X been x?” The same definition is applicable when X and Y are sets of variables, if by Mx
we mean a model where the equations of all members of X are replaced by constants. This
raises enormously the number of counterfactual sentences computable by a given model and
brings up an interesting question: How can a simple model, consisting of just a few equations,
assign values to so many counterfactuals? The answer is that the values that these counterfac-
tuals receive are not totally arbitrary, but must cohere with each other to be consistent with an
underlying model.

For example, if we observe X(u) = 1 and Y(u) = 0, then YX=1(u) must be zero, because
setting X to a value it already has, X(u), should produce no change in the world. Hence, Y
should stay at its current value of Y(u) = 0.

In general, counterfactuals obey the following consistency rule:

if X = x then Yx = Y (4.6)

If X is binary, then the consistency rule takes the convenient form:

Y = XY1 + (1 − X)Y0

which can be interpreted as follows: Y1 is equal to the observed value of Y whenever X takes
the value one. Symmetrically, Y0 is equal to the observed value of Y whenever X is zero. All
these constraints are automatically satisfied if we compute counterfactuals through Eq. (4.5).

4.2.3 From Population Data to Individual Behavior—An Illustration

To illustrate the use of counterfactuals in reasoning about the behavior of an individual unit,
we refer to the model depicted in Figure 4.1, which represents an “encouragement design”:
X represents the amount of time a student spends in an after-school remedial program, H the
amount of homework a student does, and Y a student’s score on the exam. The value of each
variable is given as the number of standard deviations above the mean the student falls (i.e.,

a = 0.5X YH c = 0.4
(Encouragement) (Homework) (Exam score)

b = 0.7

Figure 4.1 A model depicting the effect of Encouragement (X) on student’s score
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the model is standardized so that all variables have mean 0 and variance 1). For example, if
Y = 1, then the student scored 1 standard deviation above the mean on his or her exam. This
model represents a randomized pilot program, in which students are assigned to the remedial
sessions by the luck of the draw.

Model 4.1

X = UX

H = a ⋅ X + UH

Y = b ⋅ X + c ⋅ H + UY

𝜎UiUj
= 0 for all i, j ∈ {X,H,Y}

We assume that all U factors are independent and that we are given the values for the coeffi-
cients of Model 4.1 (these can be estimated from population data):

a = 0.5, b = 0.7, c = 0.4

Let us consider a student named Joe, for whom we measure X = 0.5,H = 1, and Y = 1.5.
Suppose we wish to answer the following query: What would Joe’s score have been had he
doubled his study time?

In a linear SEM, the value of each variable is determined by the coefficients and the U
variables; the latter account for all variation among individuals. As a result, we can use the
evidence X = 0.5,H = 1, and Y = 1.5 to determine the values of the U variables associated
with Joe. These values are invariant to hypothetical actions (or “miracles”) such as those that
might cause Joe to double his homework.

In this case, we are able to obtain the specific characteristics of Joe from the evidence:

UX = 0.5,

UH = 1 − 0.5 ⋅ 0.5 = 0.75, and

UY = 1.5 − 0.7 ⋅ 0.5 − 0.4 ⋅ 1 = 0.75.

Next, we simulate the action of doubling Joe’s study time by replacing the structural
equation for H with the constant H = 2. The modified model is depicted in Figure 4.2. Finally,
we compute the value of Y in our modified model using the updated U values, giving

c = 0.4

b = 0.7

H = 2 Y
(Encouragement) (Exam score)

X
(Homework)

Figure 4.2 Answering a counterfactual question about a specific student’s score, predicated on the
assumption that homework would have increased to H = 2
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YH=2(UX = 0.5,UH = 0.75,UY = 0.75)

= 0.5 ⋅ 0.7 + 2.0 ⋅ 0.4 + 0.75

= 1.90

We thus conclude that Joe’s score, had he doubled his homework, would have been 1.9 instead
of 1.5. This, according to our convention, would mean an increase to 1.9 standard deviations
above the mean, instead of the current 1.5.

In summary, we first applied the evidence X = 0.5,H = 1, and Y = 1.5 to update the values
for the U variables. We then simulated an external intervention to force the condition H = 2 by
replacing the structural equation H = aX + UH with the equation H = 2. Finally, we computed
the value of Y given the structural equations and the updated U values. (In all of the above, we,
of course, assumed that the U variables are unchanged by the hypothetical intervention on H.)

4.2.4 The Three Steps in Computing Counterfactuals

The case of Joe and the after-school program illustrates the way in which the fundamental
definition of counterfactuals can be turned into a process for obtaining the value of a given
counterfactual. There is a three-step process for computing any deterministic counterfactual:

(i) Abduction: Use evidence E = e to determine the value of U.
(ii) Action: Modify the model, M, by removing the structural equations for the variables

in X and replacing them with the appropriate functions X = x, to obtain the modified
model, Mx.

(iii) Prediction: Use the modified model, Mx, and the value of U to compute the value of Y ,
the consequence of the counterfactual.

In temporal metaphors, Step (i) explains the past (U) in light of the current evidence e; Step
(ii) bends the course of history (minimally) to comply with the hypothetical antecedent X = x;
finally, Step (iii) predicts the future (Y) based on our new understanding of the past and our
newly established condition, X = x.

This process will solve any deterministic counterfactual, that is, counterfactuals pertaining
to a single unit of the population in which we know the value of every relevant variable. Struc-
tural equation models are able to answer counterfactual queries of this nature because each
equation represents the mechanism by which a variable obtains its values. If we know these
mechanisms, we should also be able to predict what values would be obtained had some of
these mechanisms been altered, given the alterations. As a result, it is natural to view coun-
terfactuals as derived properties of structural equations. (In some frameworks, counterfactuals
are taken as primitives (Holland 1986; Rubin 1974).)

But counterfactuals can also be probabilistic, pertaining to a class of units within the popu-
lation; for instance, in the after-school program example, we might want to know what would
have happened if all students for whom Y < 2 had doubled their homework time. These prob-
abilistic counterfactuals differ from do-operator interventions because, like their determin-
istic counterparts, they restrict the set of individuals intervened upon, which do-expressions
cannot do.

We can now advance from deterministic to probabilistic models, so we can deal with ques-
tions about probabilities and expectations of counterfactuals. For example, suppose Joe is a
student participating in the study of Figure 4.1, who scored Y = y in the exam. What is the
probability that Joe’s score would be Y = y′ had he had five more hours of encouragement
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training? Or, what would his expected score be in such hypothetical world? Unlike in the
example of Model 4.1, we now do not have information on all three variables, {X,Y ,H}, and
we cannot therefore determine uniquely the value u that pertains to Joe. Instead, Joe may
belong to a large class of units compatible with the evidence available, each having a different
value of u.

Nondeterminism enters causal models by assigning probabilities P(U = u) over the exoge-
nous variables U. These represent our uncertainty as to the identity of the subject under con-
sideration or, when the subject is known, what other characteristics that subject has that might
have bearing on our problem.

The exogenous probability P(U = u) induces a unique probability distribution on the
endogenous variables V ,P(v), with the help of which we can define and compute not only
the probability of any single counterfactual, Yx = y, but also the joint distributions of all
combinations of observed and counterfactual variables. For example, we can determine
P(Yx = y,Zw = z,X = x′), where X,Y ,Z, and W are arbitrary variables in a model. Such
joint probabilities refer to the proportion of individuals u in the population for which all the
events in the parentheses are true, namely, Yx(u) = y and Zw(u) = z and X(u) = x′, allowing,
in particular, w or x′ to conflict with x.

A typical query about these probabilities asks, “Given that we observe feature E = e for a
given individual, what would we expect the value of Y for that individual to be if X had been
x?” This expectation is denoted E[YX=x|E = e], where we allow E = e to conflict with the
antecedent X = x. E = e after the conditioning bar represents all information (or evidence) we
might have about the individual, potentially including the values of X,Y , or any other variable,
as we have seen in Eq. (4.1). The subscript X = x represents the antecedent specified by the
counterfactual sentence.

The specifics of how these probabilities and expectations are dealt with will be examined in
the following sections, but for now, it is important to know that using them, we can generalize
our three-step process to any probabilistic nonlinear system.

Given an arbitrary counterfactual of the form, E[YX=x|E =e], the three-step process reads:

(i) Abduction: Update P(U) by the evidence to obtain P(U|E = e).
(ii) Action: Modify the model, M, by removing the structural equations for the variables

in X and replacing them with the appropriate functions X = x, to obtain the modified
model, Mx.

(iii) Prediction: Use the modified model, Mx, and the updated probabilities over the
U variables, P(U|E = e), to compute the expectation of Y , the consequence of the
counterfactual.

We shall see in Section 4.4 that the above probabilistic procedure applies not only to ret-
rospective counterfactual queries (queries of the form “What would have been the value of Y
had X been x?”) but also to certain kinds of intervention queries. In particular, it applies when
we make every individual take an action that depends on the current value of his/her X. A typ-
ical example would be “additive intervention”: for example, adding 5 mg/l of insulin to every
patient’s regiment, regardless of their previous dosage. Since the final level of insulin varies
from patient to patient, this policy cannot be represented in do-notation.

For another example, suppose we wish to estimate, using Figure 4.1, the effect on test score
provided by a school policy that sends students who are lazy on their homework (H ≤ H0) to
attend the after-school program for X = 1. We can’t simply intervene on X to set it equal to 1
in cases where H is low, because in our model, X is one of the causes of H.
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Instead, we express the expected value of this quantity in counterfactual notation as
[YX=1|H ≤ H0] ,which can, in principle, be computed using the above three-step method.

Counterfactual reasoning and the above procedure are necessary for estimating the effect of
actions and policies on subsets of the population characterized by features that, in themselves,
are affected by the policy (e.g., H ≤ H0).

4.3 Nondeterministic Counterfactuals

4.3.1 Probabilities of Counterfactuals

To examine how nondeterminism is reflected in the calculation of counterfactuals, let us assign
probabilities to the values of U in the model of Eqs. (4.3) and (4.4). Imagine that U = {1, 2, 3}
represents three types of individuals in a population, occurring with probabilities

P(U = 1) = 1
2
,P(U = 2) = 1

3
, and P(U = 3) = 1

6

All individuals within a population type have the same values of the counterfactuals, as speci-
fied by the corresponding rows in Table 4.1. With these values, we can compute the probability
that the counterfactuals will satisfy a specified condition. For instance, we can compute the
proportion of units for which Y would be 3 had X been 2, or Y2(u) = 3. This condition occurs
only in the first row of the table and, since it is a property of U = 1, we conclude that it will
occur with probability 1

2
, giving P(Y2 = 3) = 1

2
. We can similarly compute the probability of

any counterfactual statement, for example, P(Y1 = 4) = 1
6
,P(Y1 = 3) = 1

3
,P(Y2 > 3) = 1

2
, and

so on. What is remarkable, however, is that we can also compute joint probabilities of every
combination of counterfactual and observable events. For example,

P(Y2 > 3,Y1 < 4) = 1
3

P(Y1 < 4,Y − X > 1) = 1
3

P(Y1 < Y2) = 1

In the first of these expressions, we find a joint probability of two events occurring in two
different worlds; the first Y2 > 3 in an X = 2 world, and the second Y1 < 4, in X = 1. The
probability of their conjunction evaluates to 1

3
because the two events co-occur only at U = 2,

which was assigned a probability of 1
3
. Other cross-world events appear in the second and third

expressions. Remarkably (and usefully), this clash between the worlds provides no barrier to
calculation. In fact, cross-world probabilities are as simple to derive as intra-world ones: We
simply identify the rows in which the specified combination is true and sum up the probabilities
assigned to those rows. This immediately gives us the capability of computing conditional
probabilities among counterfactuals and defining notions such as dependence and conditional
independence among counterfactuals, as we did in Chapter 1 when we dealt with observable
variables. For instance, it is easy to verify that, among individuals for which Y is greater than 2,
the probability is 2

3
that Y would increase if X were 3. (Because P(Y3 > Y|Y > 2) = 1

3
∕ 1

2
= 2

3
.)

Similarly, we can verify that the difference Yx+1 − Yx is independent of x, which means that the

E
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causal effect of X on Y does not vary across population types, a property shared by all linear
models.

Such joint probabilities over multiple-world counterfactuals can easily be expressed using
the subscript notation, as in P(Y1 = y1,Y2 = y2), and can be computed from any structural
model as we did in Table 4.1. They cannot however be expressed using the do(x) notation,
because the latter delivers just one probability for each intervention X = x. To see the ramifi-
cations of this limitation, let us examine a slight modification of the model in Eqs. (4.3) and
(4.4), in which a third variable Z acts as mediator between X and Y . The new model’s equations
are given by

X = U1 Z = aX + U2,Y = bZ (4.7)

and its structure is depicted in Figure 4.3. To cast this model in a context, let X = 1 stand for
having a college education, U2 = 1 for having professional experience, Z for the level of skill
needed for a given job, and Y for salary.

Suppose our aim is to compute E[YX=1|Z = 1], which stands for the expected salary of indi-
viduals with skill level Z = 1, had they received a college education. This quantity cannot
be captured by a do-expression, because the condition Z = 1 and the antecedent X = 1 refer
to two different worlds; the former represents current skills, whereas the latter represents a
hypothetical education in an unrealized past. An attempt to capture this hypothetical salary
using the expression E[Y|do(X = 1),Z = 1] would not reveal the desired information. The
do-expression stands for the expected salary of individuals who all finished college and have
since acquired skill level Z = 1. The salaries of these individuals, as the graph shows, depend
only on their skill, and are not affected by whether they obtained the skill through college or
through work experience. Conditioning on Z = 1, in this case, cuts off the effect of the interven-
tion that we’re interested in. In contrast, some of those who currently have Z = 1 might not have
gone to college and would have attained higher skill (and salary) had they gotten college edu-
cation. Their salaries are of great interest to us, but they are not included in the do-expression.
Thus, in general, the do-expression will not capture our counterfactual question:

E[Y|do(X = 1), Z = 1] ≠ E[YX=1|Z = 1] (4.8)

We can further confirm this inequality by noting that, while E[Y|do(X = 1),Z = 1] is equal
to E[Y|do(X = 0),Z = 1],E[YX=1|Z = 1] is not equal to E[YX=0|Z = 1]; the formers treat
Z = 1 as a postintervention condition that prevails for two different sets of units under the
two antecedents, whereas the latters treat it as defining one set of units in the current world
that would react differently under the two antecedents. The do(x) notation cannot capture the
latters because the events X = 1 and Z = 1 in the expression E[YX=1|Z = 1] refer to two dif-
ferent worlds, pre- and postintervention, respectively. The expression E[Y|do(X = 1),Z = 1]

U1 U2

Y
(Salary)

X
(College)

ba Z
(Skill)

Figure 4.3 A model representing Eq. (4.7), illustrating the causal relations between college education
(X), skills (Z), and salary (Y)
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on the other hand, invokes only postintervention events, and that is why it is expressible in
do(x) notation.

A natural question to ask is whether counterfactual notation can capture the postintervention,
single-world expression E[Y|do(X = 1),Z = 1]. The answer is affirmative; being more flexi-
ble, counterfactuals can capture both single-world and cross-world probabilities. The transla-
tion of E[Y|do(X = 1),Z = 1] into counterfactual notation is simply E[YX=1|ZX=1 = 1], which
explicitly designates the event Z = 1 as postintervention. The variable ZX=1stands for the value
that Z would attain had X been 1, and this is precisely what we mean when we put Z = z in a
do-expression by Bayes’ rule:

P Y = y|do(X = 1), Z = z =
P(Y = y,Z = z|do(X = 1))

P(Z = z|do(X = 1))

This shows explicitly how the dependence of Z on X should be treated. In the special case
where Z is a preintervention variable, as age was in our discussion of conditional interventions
(Section 3.5) we have ZX=1 = Z, and we need not distinguish between the two. The inequality
in (4.8) then turns into an equality.

Let’s look at how this logic is reflected in the numbers. Table 4.2 depicts the counterfactuals
associated with the model of (4.7), with all subscripts denoting the state of X. It was constructed
by the same method we used in constructing Table 4.1: replacing the equation X = u with the 
appropriate constant (zero or one) and solving for Y and Z. Using this table, we can verify 
immediately that (see footnote 2)

E[Y1|Z = 1] = (a + 1)b (4.9)

E[Y0|Z = 1] = b (4.10)

E[Y|do(X = 1),Z = 1] = b (4.11)

E[Y|do(X = 0),Z = 1] = b (4.12)

These equations provide numerical confirmation of the inequality in (4.8). They also demon-
strate a peculiar property of counterfactual conditioning that we have noted before: Despite
the fact that Z separates X from Y in the graph of Figure 4.3, we find that X has an effect on Y
for those units falling under Z = 1:

E[Y1 − Y0|Z = 1] = ab ≠ 0

The reason for this behavior is best explained in the context of our salary example. While the
salary of those who have acquired skill level Z = 1 depends only on their skill, not on X, the

Table 4.2 The values attained by X(u),Y(u), Z(u),Y0(u),Y1(u), Z0(u), and Z1(u) in the model of
Eq. (4.7)

X = u1 Z = aX + u2 Y = bZ
u1 u2 X(u) Z(u) Y(u) Y0(u) Y1(u) Z0(u) Z1(u)
0 0 0 0 0 0 ab 0 a
0 1 0 1 b b (a + 1)b 1 a + 1
1 0 1 a ab 0 ab 0 a
1 1 1 a + 1 (a + 1)b b (a + 1)b 1 a + 1

2 Strictly speaking, the quantity E[Y| do(X=1), Z = 1] in Eq. (4.11) is undefined because the observation Z = 1 is 
not possible post-intervention of do(X = 1). However, for the purposes of the example, we can imagine that Z = 1 
was observed due to some error term z   Z that accounts for the deviation. Eq. (4.11) then follows. 

( )
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salary of those who are currently at Z = 1 would have been different had they had a differ-
ent past. Retrospective reasoning of this sort, concerning dependence on the unrealized past,
is not shown explicitly in the graph of Figure 4.3. To facilitate such reasoning, we need to
devise means of representing counterfactual variables directly in the graph; we provide such
representations in Section 4.3.2.

Thus far, the relative magnitudes of the probabilities of P(u1) and P(u2) have not entered
into the calculations, because the condition Z = 1 occurs only for u1 = 0 and u2 = 1 (assuming
that a ≠ 0 and a ≠ 1), and under these conditions, each of Y ,Y1, and Y0 has a definite value.
These probabilities play a role, however, if we assume a = 1 in the model, since Z = 1 can
now occur under two conditions: (u1 = 0, u2 = 1) and (u1 = 1, u2 = 0). The first occurs with
probability P(u1 = 0)P(u2 = 1) and the second with probability P(u1 = 1)P(u2 = 0). In such
a case, we obtain

E[YX=1|Z = 1] = b

(
1 +

P(u1 = 0)P(u2 = 1)
P(u1 = 0)P(u2 = 1) + P(u1 = 1)P(u2 = 0)

)
(4.13)

E[YX=0|Z = 1] = b

(
P(u1 = 0)P(u2 = 1)

P(u1 = 0)P(u2 = 1) + P(u1 = 1)P(u2 = 0)

)
(4.14)

The fact that the first expression is larger than the second demonstrates again that the
skill-specific causal effect of education on salary is nonzero, despite the fact that salaries are
determined by skill only, not by education. This is to be expected, since a nonzero fraction of
the workers at skill level Z = 1 did not receive college education, and, had they been given
college education, their skill would have increased to Z1 = 2, and their salaries to 2b.

Study question 4.3.1

Consider the model in Figure 4.3 and assume that U1 and U2 are two independent Gaussian
variables, each with zero mean and unit variance.

(a) Find the expected salary of workers at skill level Z = z had they received x years of col-
lege education. [Hint: Use Theorem 4.3.2, with e ∶ Z = z, and the fact that for any two
Gaussian variables, say X and Z, we have E[X|Z = z] = E[X] + RXZ (z − E[Z]). Use the
material in Sections 3.8.2 and 3.8.3 to express all regression coefficients in terms of struc-
tural parameters, and show that E[Yx|Z = z] = abx + bz∕(1 + a2).]

(b) Based on the solution for (a), show that the skill-specific effect of education on salary is
independent of the skill level.

4.3.2 The Graphical Representation of Counterfactuals

Since counterfactuals are byproducts of structural equation models, a natural question to ask
is whether we can see them in the causal graphs associated with those models. The answer is
affirmative, as can be seen from the fundamental law of counterfactuals, Eq. (4.5). This law
tells us that if we modify model M to obtain the submodel Mx, then the outcome variable Y in
the modified model is the counterfactual Yx of the original model. Since modification calls for
removing all arrows entering the variable X, as illustrated in Figure 4.4, we conclude that the
node associated with the Y variable serves as a surrogate for Yx, with the understanding that
the substitution is valid only under the modification.
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(b)(a)
Yx

X = x
Y

X

W2

(W3)
x

W3

Z3

Z2

W2

Z1

W1

Z2

Z1

W1
Z3

Figure 4.4 Illustrating the graphical reading of counterfactuals. (a) The original model. (b) The modi-
fied model Mx in which the node labeled Yx represents the potential outcome Y predicated on X = x

This temporary visualization of counterfactuals is sufficient to answer some fundamental
questions about the statistical properties of Yx and how those properties depend on other vari-
ables in the model, specifically when those other variables are conditioned on.

When we ask about the statistical properties of Yx, we need to examine what would cause Yx
to vary. According to its structural definition, Yx represents the value of Y under a condition 
where X is held constant at X = x. Statistical variations of Yx are therefore governed by all
exogenous variables capable of influencing Y when X is held constant, that is, when the arrows 
entering X are removed, as in Figure 4.4(b). Under such conditions, the set of variables capable 
of transmitting variations to Y are the parents of Y (observed and unobserved), as well as 
parents of nodes on the pathways between X and Y. In Figure 4.4(b), for example, these parents
are {Z3,W2,U3,UY}, where UY and U3, the error terms of Y and W3, are not shown in the
diagram. (These variables remain the same in both models.) Any set of variables that blocks
a path to these parents also blocks that path to Yx, and will result in, therefore, a conditional 
independence for Yx. In particular, if we have a set Z of covariates that satisfies the backdoor 
criterion in M (see Definition 3.3.1), that set also blocks all paths between X and those parents,
and consequently, it renders X and Yx independent in every stratum Z = z.

These considerations are summarized formally in Theorem 4.3.1.

Theorem 4.3.1 (Counterfactual Interpretation of Backdoor) If a set Z of variables sat-
isfies the backdoor condition relative to (X,Y), then, for all x, the counterfactual Yx is condi-
tionally independent of X given Z

P(Yx|X,Z) = P(Yx|Z) (4.15)

Theorem 4.3.1 has far-reaching consequences when it comes to estimating the probabilities
of counterfactuals from observational studies. In particular, it implies that P(Yx = y)is iden-
tifiable by the adjustment formula of Eq. (3.5). To prove this, we condition on Z (as in 
Eq. (1.9)) and write

P(Yx = y) =
∑

z

P(Yx = y|Z = z)P(z)

=
∑

z

P(Yx = y|Z = z,X = x)P(z)

=
∑

z

P(Y = y|Z = z,X = x)P(z) (4.16)
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The second line was licensed by Theorem 4.3.1, whereas the third line was licensed by the
consistency rule (4.6).

The fact that we obtained the familiar adjustment formula in Eq. (4.16) is not really sur-
prising, because this same formula was derived in Section 3.2 (Eq. (3.4)), for P(Y = y|do(x)),
and we know that P(Yx = y) is just another way of writing P(Y = y|do(x)). Interestingly, this
derivation invokes only algebraic steps; it makes no reference to the model once we ensure
that Z satisfies the backdoor criterion. Equation (4.15), which converts this graphical real-
ity into algebraic notation, and allows us to derive (4.16), is sometimes called “conditional
ignorability”; Theorem 4.3.1 gives this notion a scientific interpretation and permits us to test
whether it holds in any given model.

Having a graphical representation for counterfactuals, we can resolve the dilemma we faced
in Section 4.3.1 (Figure 4.3), and explain graphically why a stronger education (X) would have
had an effect on the salary (Y) of people who are currently at skill level Z = z, despite the fact
that, according to the model, salary is determined by skill only. Formally, to determine if the
effect of education on salary (Yx) is statistically independent of the level of education, we need
to locate Yx in the graph and see if it is d-separated from X given Z. Referring to Figure 4.3,
we see that Yx can be identified with U2, the only parent of nodes on the causal path from X
to Y (and therefore, the only variable that produces variations in Yx while X is held constant).
A quick inspection of Figure 4.3 tells us that Z acts as a collider between X and U2, and,
therefore, X and U2 (and similarly X and Yx) are not d-separated given Z. We conclude
therefore

E[Yx|X,Z] ≠ E[Yx|Z]
despite the fact that

E[Y|X,Z] = E[Y|Z]
In Study question 4.3.1, we evaluate these counterfactual expectations explicitly, assuming

a linear Gaussian model. The graphical representation established in this section permits us
to determine independencies among counterfactuals by graphical means, without assuming
linearity or any specific parametric form. This is one of the tools that modern causal analysis
has introduced to statistics, and, as we have seen in the analysis of the education–skill–salary
story, it takes a task that is extremely hard to solve by unaided intuition and reduces it to simple
operations on graphs. Additional methods of visualizing counterfactual dependencies, called
“twin networks,” are discussed in (Pearl 2000, pp. 213–215).

4.3.3 Counterfactuals in Experimental Settings

Having convinced ourselves that every counterfactual question can be answered from a fully
specified structural model, we next move to the experimental setting, where a model is not
available, and the experimenter must answer interventional questions on the basis of a finite
sample of observed individuals. Let us refer back to the “encouragement design” model of
Figure 4.1, in which we analyzed the behavior of an individual named Joe, and assume that
the experimenter observes a set of 10 individuals, with Joe being participant 1. Each individual
is characterized by a distinct vector Ui = (UX ,UH ,UY ), as shown in the first three columns of
Table 4.3.
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Table 4.3 Potential and observed outcomes predicted by the structural model of Figure 4.1
units were selected at random, with each Ui uniformly distributed over [0, 1]

Participant
characteristics

Observed
behavior

Predicted potential
outcomes

Participant UX UH UY X Y H Y0 Y1 H0 H1 Y00 · · ·
1 0.5 0.75 0.75 0.5 1.50 1.0 1.05 1.95 0.75 1.25 0.75
2 0.3 0.1 0.4 0.3 0.71 0.25 0.44 1.34 0.1 0.6 0.4
3 0.5 0.9 0.2 0.5 1.01 1.15 0.56 1.46 0.9 1.4 0.2
4 0.6 0.5 0.3 0.6 1.04 0.8 0.50 1.40 0.5 1.0 0.3
5 0.5 0.8 0.9 0.5 1.67 1.05 1.22 2.12 0.8 1.3 0.9
6 0.7 0.9 0.3 0.7 1.29 1.25 0.66 1.56 0.9 1.4 0.3
7 0.2 0.3 0.8 0.2 1.10 0.4 0.92 1.82 0.3 0.8 0.8
8 0.4 0.6 0.2 0.4 0.80 0.8 0.44 1.34 0.6 1.1 0.2
9 0.6 0.4 0.3 0.6 1.00 0.7 0.46 1.36 0.4 0.9 0.3
10 0.3 0.8 0.3 0.3 0.89 0.95 0.62 1.52 0.8 1.3 0.3

Using this information, we can create a full data set that complies with the model. For
each triplet (UX ,UH ,UY ), the model of Figure 4.1 enables us to complete a full row of the
table, including Y0 and Y1, which stand for the potential outcomes under treatment (X = 1)
and control (X = 0) conditions, respectively. We see that the structural model in Figure 4.1 
encodes in effect a synthetic population of individuals together with their predicted behavior 
under both observational and experimental conditions. The columns labeled X,Y,H predict
the results of observational studies, and those labeled Y0,Y1,H0,H1 predict the hypothetical
outcome under two treatment regimes, X = 0, and X = 1. Many more, in fact infinite, potential
outcomes may be predicted; for example, YX=0.5,Z=2.0 as computed for Joe from Figure 4.2, as
well as all combinations of subscripted variables. From this synthetic population, one can esti-
mate the probability of every counterfactual query on variables X,Y,H, assuming, of course, 
that we are in possession of all entries of the table. The estimation would require us to sim-
ply count the proportion of individuals that satisfy the specified query as demonstrated in 
Section 4.3.1.

Needless to say, the information conveyed by Table 4.3 is not available to us in either obser-
vational or experimental studies. This information was deduced from a parametric model such
as the one in Figure 4.2, from which we could infer the defining characteristics {UX,UH,UY }
of each participant, given the observations {X,H,Y}. In general, in the absence of a paramet-
ric model, there is very little we learn about the potential outcomes Y1 and Y0 of individual 
participants, when all we have is their observed behavior {X,H,Y}. Theoretically, the only 
connection we have between the counterfactuals {Y1,Y0} and the observables {X,H,Y} is the 
consistency rule of Eq. (4.6), which informs us that Y1 must be equal to Y in case X =1 and 
Y0 must be equal to Y in case X = 0. But aside from this tenuous connection, most of the 
counterfactuals associated with the individual participants will remain unobserved.

Fortunately, there is much we can learn about those counterfactuals at the population level,
such as estimating their probabilities or expectation. This we have witnessed already through
the adjustment formula of (4.16), where we were able to compute E(Y1 − Y0) using the graph
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alone, instead of a complete model. Much more can be obtained from experimental studies,
where even the graph becomes dispensable.

Assume that we have no information whatsoever about the underlying model. All we have
are measurements on Y taken in an experimental study in which X is randomized over two
levels, X = 0 and X = 1.

Table 4.4 describes the responses of the same 10 participants (Joe being participant 1)
under such experimental conditions, with participants 1, 5, 6, 8, and 10 assigned to X = 0,
and the rest to X = 1. The first two columns give the true potential outcomes (taken from
Table 4.3), while the last two columns describe the information available to the experimenter,
where a square indicates that the response was not observed. Clearly, Y0 is observed only
for participants assigned to X = 0 and, similarly, Y1 is observed only for those assigned
to X = 1. Randomization assures us that, although half of the potential outcomes are not
observed, the difference between the observed means in the treatment and control groups
will converge to the difference of the population averages, E(Y1 − Y0) = 0.9. This is because
randomization distributes the black squares at random along the two rightmost columns of
Table 4.4, independent of the actual values of Y0 and Y1, so as the number of samples increases, 
the sample means converge to the population means.

This unique and important property of randomized experiments is not new to us, since
randomization, like interventions, renders X independent of any variable that may affect Y
(as in Figure 4.4(b)). Under such conditions, the adjustment formula (4.16) is applicable with
Z = { }, yielding E[Yx] = E[Y|X = x], where x = 1 represents treated units and x = 0
untreated. Table 4.4 helps us understand what is actually computed when we take sample
averages in experimental settings and how those averages are related to the underlying
counterfactuals, Y1 and Y0.

Table 4.4 Potential and observed outcomes in a randomized clinical trial with X randomized
over X = 0 and X = 1

Predicted
potential outcomes

Observed
outcomes

Participant Y0 Y1 Y0 Y1

1 1.05 1.95 1.05 ◾
2 0.44 1.34 ◾ 1.34
3 0.56 1.46 ◾ 1.46
4 0.50 1.40 ◾ 1.40
5 1.22 2.12 1.22 ◾
6 0.66 1.56 0.66 ◾
7 0.92 1.82 ◾ 1.82
8 0.44 1.34 0.44 ◾
9 0.46 1.36 ◾ 1.36

10 0.62 1.52 0.62 ◾

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

True average treatment effect: 0.90 Study average treatment effect: 0.68
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4.3.4 Counterfactuals in Linear Models

In nonparametric models, counterfactual quantities of the form E[YX=x|Z = z]may not be iden-
tifiable, even if we have the luxury of running experiments. In fully linear models, however,
things are much easier; any counterfactual quantity is identifiable whenever the model parame-
ters are identified. This is because the parameters fully define the model’s functions, and as we
have seen earlier, once the functions are given, counterfactuals are computable using Eq. (4.5).
Since every model parameter is identifiable from interventional studies using the interven-
tional definition of direct effects, we conclude that in linear models, every counterfactual is
experimentally identifiable. The question remains whether counterfactuals can be identified in
observational studies, when some of the model parameters are not identified. It turns out that
any counterfactual of the form E[YX=x|Z = e], with e an arbitrary set of evidence, is identified
whenever E[Y|do(X = x)] is identified (Pearl 2000, p. 389). The relation between the two is
summarized in Theorem 4.3.2, which provides a shortcut for computing counterfactuals.

Theorem 4.3.2 Let 𝜏 be the slope of the total effect of X on Y,

𝜏 = E[Y|do(x + 1)] − E[Y|do(x)]

then, for any evidence Z = e, we have

E[YX=x|Z = e] = E[Y|Z = e] + 𝜏(x − E[X|Z = e]) (4.17)

This provides an intuitive interpretation of counterfactuals in linear models: E[YX=x|Z = e]
can be computed by first calculating the best estimate of Y conditioned on the evidence e,
E[Y|e], and then adding to it whatever change is expected in Y when X is shifted from its
current best estimate, E[X|Z = e], to its hypothetical value, x.

Methodologically, the importance of Theorem 4.3.2 lies in enabling researchers to answer
hypothetical questions about individuals (or sets of individuals) from population data. The ram-
ifications of this feature in legal and social contexts will be explored in the following sections.
In the situation illustrated by Figure 4.2, we computed the counterfactual YH=2 under the evi-
dence e = {X = 0.5,H = 1,Y = 1}. We now demonstrate how Theorem 4.3.2 can be applied
to this model in computing the effect of treatment on the treated

ETT = E[Y1 − Y0|X = 1] (4.18)

Substituting the evidence e = {X = 1} in Eq. (4.17) we get

ETT = E[Y1|X = 1] − E[Y0|X = 1]

= E[Y|X = 1] − E[Y|X = 1] + 𝜏(1 − E[X|X = 1]) − 𝜏(0 − E[X|X = 1])

= 𝜏

= b + ac = 0.9

In other words, the effect of treatment on the treated is equal to the effect of treatment on
the entire population. This is a general result in linear systems that can be seen directly from
Eq. (4.17); E[Yx+1 −Yx|e] = 𝜏, independent on the evidence of e. Things are different when a
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multiplicative (i.e., nonlinear) interaction term is added to the output equation. For example,
if the arrow X → H were reversed in Figure 4.1, and the equation for Y read

Y = bX + cH + 𝛿XH + UY (4.19)

𝜏 would differ from ETT. We leave it to the reader as an exercise to show that the difference
𝜏 − ETT then equals 𝛿a

1+a2 (see Study question 4.3.2(c)).

Study questions

Study question 4.3.2

(a) Describe how the parameters a, b, c in Figure 4.1 can be estimated from nonexperi-
mental data.

(b) In the model of Figure 4.3, find the effect of education on those students whose salary is
Y = 1. [Hint: Use Theorem 4.3.2 to compute E[Y1 − Y0|Y = 1].]

(c) Estimate 𝜏 and the ETT = E[Y1 − Y0|X = 1] for the model described in Eq. (4.19).
[Hint: Use the basic definition of counterfactuals, Eq. (4.5) and the equality
E[Z|X = x′] = RZXx′.]

4.4 Practical Uses of Counterfactuals

Now that we know how to compute counterfactuals, it will be instructive—and motivating—to
see counterfactuals put to real use. In this section, we examine examples of problems that seem
baffling at first, but that can be solved using the techniques we just laid out. Hopefully, the
reader will leave this chapter with both a better understanding of how counterfactuals are used
and a deeper appreciation of why we would want to use them.

4.4.1 Recruitment to a Program

Example 4.4.1 A government is funding a job training program aimed at getting jobless peo-
ple back into the workforce. A pilot randomized experiment shows that the program is effective;
a higher percentage of people were hired among those who finished the program than among
those who did not go through the program. As a result, the program is approved, and a recruit-
ment effort is launched to encourage enrollment among the unemployed, by offering the job
training program to any unemployed person who elects to enroll.

Lo and behold, enrollment is successful, and the hiring rate among the program’s graduates
turns out even higher than in the randomized pilot study. The program developers are happy
with the results and decide to request additional funding.

Oddly, critics claim that the program is a waste of taxpayers’ money and should be ter-
minated. Their reasoning is as follows: While the program was somewhat successful in the
experimental study, where people were chosen at random, there is no proof that the program
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accomplishes its mission among those who choose to enroll of their own volition. Those who
self-enroll, the critics say, are more intelligent, more resourceful, and more socially connected
than the eligible who did not enroll, and are more likely to have found a job regardless of
the training. The critics claim that what we need to estimate is the differential benefit of the
program on those enrolled: the extent to which hiring rate has increased among the enrolled,
compared to what it would have been had they not been trained.

Using our subscript notation for counterfactuals, and letting X = 1 represent training and
Y = 1 represent hiring, the quantity that needs to be evaluated is the effect of training on the
trained (ETT, better known as “effect of treatment on the treated,” Eq. (4.18)):

ETT = E[Y1 − Y0|X = 1] (4.20)

Here the difference Y1 − Y0 represents the causal effect of training (X) on hiring (Y) for a ran-
domly chosen individual, and the condition X = 1 limits the choice to those actually choosing
the training program on their own initiative.

As in our freeway example of Section 4.1, we are witnessing a clash between the antecedent
(X = 0) of the counterfactual Y0 (hiring had training not taken place) and the event it is con-
ditioned on, X = 1. However, whereas the counterfactual analysis in the freeway example
had no tangible consequences save for a personal regret statement—“I should have taken the
freeway”—here the consequences have serious economic implications, such as terminating
a training program, or possibly restructuring the recruitment strategy to attract people who
would benefit more from the program offered.

The expression for ETT does not appear to be estimable from either observational or exper-
imental data. The reason rests, again, in the clash between the subscript of Y0 and the event
X = 1 on which it is conditioned. Indeed, E[Y0|X = 1] stands for the expectation that a trained
person (X = 1) would find a job had he/she not been trained. This counterfactual expectation
seems to defy empirical measurement because we can never rerun history and deny training to
those who received it. However, we see in the subsequent sections of this chapter that, despite
this clash of worlds, the expectation E[Y0|X = 1] can be reduced to estimable expressions in
many, though not all, situations. One such situation occurs when a set Z of covariates satisfies
the backdoor criterion with regard to the treatment and outcome variables. In such a case, ETT
probabilities are given by a modified adjustment formula:

P(Yx = y|X = x′)

=
∑

z

P(Y = y|X = x,Z = z)P(Z = z|X = x′) (4.21)

This follows directly from Theorem 4.3.1, since conditioning on Z = z gives

P(Yx = y|x′) = ∑
z

P(Yx = y|z, x′)P(z|x′)
but Theorem 4.3.1 permits us to replace x′ with x, which by virtue of (4.6) permits us to remove
the subscript x from Yx, yielding (4.21).

Comparing (4.21) to the standard adjustment formula of Eq. (3.5),

P(Y = y|do(X = x)) =
∑

P(Y = y|X = x,Z = z)P(Z = z)

we see that both formulas call for conditioning on Z = z and averaging over z, except that
(4.21) calls for a different weighted average, with P(Z = z|X = x′) replacing P(Z = z).
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Using Eq. (4.21), we readily get an estimable, noncounterfactual expression for ETT

ETT = E[Y1 − Y0|X = 1]

= E[Y1|X = 1] − E[Y0|X = 1]

= E[Y|X = 1] −
∑

z

E[Y|X = 0,Z = z]P(Z = z|X = 1)

where the first term in the final expression is obtained using the consistency rule of Eq. (4.6).
In other words, E[Y1|X = 1] = E[Y|X = 1] because, conditional on X = 1, the value that Y
would get had X been 1 is simply the observed value of Y .

Another situation permitting the identification of ETT occurs for binary X whenever both
experimental and nonexperimental data are available, in the form of P(Y = y|do(X = x)) and
P(X = x,Y = y), respectively. Still another occurs when an intermediate variable is available
between X and Y satisfying the front-door criterion (Figure 3.10(b)). What is common to these
situations is that an inspection of the causal graph can tell us whether ETT is estimable and, if
so, how.

Study questions

Study question 4.4.1

(a) Prove that, if X is binary, the effect of treatment on the treated can be estimated from both
observational and experimental data. Hint: Decompose E[Yx] into

E[Yx] = E[Yx|x′]P(x′) + E[Yx|x]P(x)
(b) Apply the result of Question (a) to Simpson’s story with the nonexperimental data of Table

1.1, and estimate the effect of treatment on those who used the drug by choice. [Hint:
Estimate E[Yx] assuming that gender is the only confounder.]

(c) Repeat Question (b) using Theorem 4.3.1 and the fact that Z in Figure 3.3 satisfies the
backdoor criterion. Show that the answers to (b) and (c) coincide.

4.4.2 Additive Interventions

Example 4.4.2 In many experiments, the external manipulation consists of adding (or sub-
tracting) some amount from a variable X without disabling preexisting causes of X, as required
by the do(x) operator. For example, we might give 5 mg/l of insulin to a group of patients with
varying levels of insulin already in their systems. Here, the preexisting causes of the manip-
ulated variable continue to exert their influences, and a new quantity is added, allowing for
differences among units to continue. Can the effect of such interventions be predicted from
observational studies, or from experimental studies in which X was set uniformly to some
predetermined value x?

If we write our question using counterfactual variables, the answer becomes obvious.
Suppose we were to add a quantity q to a treatment variable X that is currently at level X = x′.
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The resulting outcome would be Yx′+q, and the average value of this outcome over all units

currently at level X = x′ would be E[Yx|x′], with x = x′ + q. Here, we meet again the ETT
expression E[Yx|x′], to which we can apply the results described in the previous example.
In particular, we can conclude immediately that, whenever a set Z in our model satisfies
the backdoor criterion, the effect of an additive intervention is estimable using the ETT
adjustment formula of Eq. (4.21). Substituting x = x′ + q in (4.21) and taking expectations
gives the effect of this intervention, which we call add(q):

E[Y|add(q)] − E[Y]

=
∑
x′

E[Yx′+q|X = x′]P( x′) − E[Y]

=
∑
x′

∑
z

E[Y|X = x′ + q,Z = z]P(Z = z|X = x′)P(X = x′) − E[Y] (4.22)

In our example, Z may include variables such as age, weight, or genetic disposition; we require
only that each of those variables be measured and that they satisfy the backdoor condition.

Similarly, estimability is assured for all other cases in which ETT is identifiable.
This example demonstrates the use of counterfactuals to estimate the effect of practical

interventions, which cannot always be described as do-expressions, but may nevertheless be
estimated under certain circumstances. A question naturally arises: Why do we need to resort
to counterfactuals to predict the effect of a rather common intervention, one that could be
estimated by a straightforward clinical trial at the population level? We simply split a randomly
chosen group of subjects into two parts, subject half of them to an add(q) type of intervention
and compare the expected value of Y in this group to that obtained in the add(0) group. What is
it about additive interventions that force us to seek the advice of a convoluted oracle, in the form
of counterfactuals and ETT, when the answer can be obtained by a simple randomized trial?

The answer is that we need to resort to counterfactuals only because our target quantity,
E[Y|add(q)], could not be reduced to do-expressions, and it is through do-expressions that
scientists report their experimental findings. This does not mean that the desired quantity
E[Y|add(q)] cannot be obtained from a specially designed experiment; it means only that save
for conducting such a special experiment, the desired quantity cannot be inferred from sci-
entific knowledge or from a standard experiment in which X is set to X = x uniformly over
the population. The reason we seek to base policies on such ideal standard experiments is that
they capture scientific knowledge. Scientists are interested in quantifying the effect of increas-
ing insulin concentration in the blood from a given level X = x to a another level X = x + q,
and this increase is captured by the do-expression: E[Y|do(X = x + q)] − E[Y|do(X = x)]. We
label it “scientific” because it is biologically meaningful, namely its implications are invariant
across populations (indeed laboratory blood tests report patients’ concentration levels, X = x,
which are tracked over time). In contrast, the policy question in the case of additive interven-
tions does not have this invariance feature; it asks for the average effect of adding an increment
q to everyone, regardless of the current x level of each individual in this particular population.
It is not immediately transportable, because it is highly sensitive to the probability P(X = x)
in the population under study. This creates a mismatch between what science tells us and what
policy makers ask us to estimate. It is no wonder, therefore, that we need to resort to a unit-level
analysis (i.e., counterfactuals) in order to translate from one language into another.

X =
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The reader may also wonder why E[Y|add(q)] is not equal to the average causal effect∑
x

[E[Y|do(X = x + q)] − E[Y|do(X = x)]] P(X = x)

After all, if we know that adding q to an individual at level X = x would increase its expected
Y by E[Y|do(X = x + q)] − E[Y|do(X = x)], then averaging this increase over X should give
us the answer to the policy question E[Y|add(q)]. Unfortunately, this average does not capture
the policy question. This average represents an experiment in which subjects are chosen at
random from the population, a fraction P(X = x) are given an additional dose q, and the rest
are left alone. But things are different in the policy question at hand, since P(X = x) represents
the proportion of subjects who entered level X = x by free choice, and we cannot rule out the
possibility that subjects who attain X = x by free choice would react to add(q) differently from
subjects who “receive” X = x by experimental decree. For example, it is quite possible that sub-
jects who are highly sensitive to add(q) would attempt to lower their X level, given the choice.

We translate into counterfactual analysis and write the inequality:

E[Y|add(q)] =
∑

x

E[Yx+q|x]P(X = x) ≠
∑

x

E[Yx+q]P(X = x)

Equality holds only when Yx is independent of X, a condition that amounts to nonconfounding
(see Theorem 4.3.1). Absent this condition, the estimation of E[Y|add(q)] can be accomplished
either by q-specific intervention or through stronger assumptions that enable the translation of
ETT to do-expressions, as in Eq. (4.21).

Study question 4.4.2

Joe has never smoked before but, as a result of peer pressure and other personal factors, he
decided to start smoking. He buys a pack of cigarettes, comes home, and asks himself: “I am
about to start smoking, should I?”

(a) Formulate Joe’s question mathematically, in terms of ETT, assuming that the outcome of
interest is lung cancer.

(b) What type of data would enable Joe to estimate his chances of getting cancer given that
he goes ahead with the decision to smoke, versus refraining from smoking.

(c) Use the data in Table 3.1 to estimate the chances associated with the decision in (b).

4.4.3 Personal Decision Making

Example 4.4.3 Ms Jones, a cancer patient, is facing a tough decision between two possible
treatments: (i) lumpectomy alone or (ii) lumpectomy plus irradiation. In consultation with
her oncologist, she decides on (ii). Ten years later, Ms Jones is alive, and the tumor has not
recurred. She speculates: Do I owe my life to irradiation?

Mrs Smith, on the other hand, had a lumpectomy alone, and her tumor recurred after a year.
And she is regretting: I should have gone through irradiation.

Can these speculations ever be substantiated from statistical data? Moreover, what good
would it do to confirm Ms Jones’s triumph or Mrs Smith’s regret?
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The overall effectiveness of irradiation can, of course, be determined by randomized exper-
iments. Indeed, on October 17, 2002, the New England Journal of Medicine published a paper 
by Fisher et al. describing a 20-year follow-up of a randomized trial comparing 
lumpectomy alone and lumpectomy plus irradiation. The addition of irradiation to lumpectomy 
was shown to cause substantially fewer recurrences of breast cancer (14% vs 39%).

These, however, were population results. Can we infer from them the specific cases of Ms
Jones and Mrs Smith? And what would we gain if we do, aside from supporting Ms Jones’s
satisfaction with her decision or intensifying Mrs Smith’s sense of failure?

To answer the first question, we must first cast the concerns of Ms Jones and Mrs Smith in
mathematical form, using counterfactuals. If we designate remission by Y = 1 and the decision
to undergo irradiation by X = 1, then the probability that determines whether Ms Jones is
justified in attributing her remission to the irradiation (X = 1) is

PN = P(Y0 = 0|X = 1,Y = 1) (4.23)

It reads: the probability that remission would not have occurred (Y = 0) had Ms Jones not gone
through irradiation, given that she did in fact go through irradiation (X = 1), and remission did
occur (Y = 1). The label PN stands for “probability of necessity” that measures the degree to
which Ms Jones’s decision was necessary for her positive outcome.

Similarly, the probability that Ms Smith’s regret is justified is given by

PS = P(Y1 = 1|X = 0,Y = 0) (4.24)

It reads: the probability that remission would have occurred had Mrs Smith gone through
irradiation (Y1 = 1), given that she did not in fact go through irradiation (X = 0), and remission 
did not occur (Y =0). PS stands for the “probability of sufficiency,” measuring the degree to 
which the action X =1, which was not taken.

We see that these expressions have almost the same form (save for interchanging ones with
zeros) and, moreover, both are similar to Eq. (4.1), save for the fact that Y in the freeway
example was a continuous variable, so its expected value was the quantity of interest.

These two probabilities (sometimes referred to as “probabilities of causation”) play a major
role in all questions of “attribution,” ranging from legal liability to personal decision making.
They are not, in general, estimable from either observational or experimental data, but as we
shall see below, they are estimable under certain conditions, when both observational and
experimental data are available.

But before commencing a quantitative analysis, let us address our second question: What is
gained by assessing these retrospective counterfactual parameters? One answer is that notions
such as regret and success, being right or being wrong, have more than just emotional value;
they play important roles in cognitive development and adaptive learning. Confirmation of Ms
Jones’s triumph reinforces her confidence in her decision-making strategy, which may include
her sources of medical information, her attitude toward risks, and her sense of priority, as well
as the strategies she has been using to put all these considerations together. The same applies
to regret; it drives us to identify sources of weakness in our strategies and to think of some kind
of change that would improve them. It is through counterfactual reinforcement that we learn
to improve our own decision-making processes and achieve higher performance. As Kathryn
Schultz says in her delightful book Being Wrong, “However disorienting, difficult, or humbling
our mistakes might be, it is ultimately wrongness, not rightness, that can teach us who we are.”
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Estimating the probabilities of being right or wrong also has tangible and profound impact
on critical decision making. Imagine a third lady, Ms Daily, facing the same decision as Ms
Jones did, and telling herself: If my tumor is the type that would not recur under lumpectomy
alone, why should I go through the hardships of irradiation? Similarly, if my tumor is the type
that would recur regardless of whether I go through irradiation or not, I would rather not go
through it. The only reason for me to go through this is if the tumor is the type that would
remiss under treatment and recur under no treatment.

Formally, Ms Daily’s dilemma is to quantify the probability that irradiation is both necessary
and sufficient for eliminating her tumor, or

PNS = P(Y1 = 1,Y0 = 0) (4.25)

where Y1 and Y0 stand for remission under treatment (Y1) and nontreatment (Y0), respectively.
Knowing this probability would help Ms Daily’s assessment of how likely she is to belong to
the group of individuals for whom Y1 = 1 and Y0 = 0.

This probability cannot, of course, be assessed from experimental studies, because we can
never tell from experimental data whether an outcome would have been different had the person
been assigned to a different treatment. However, casting Ms Daily’s question in mathematical
form enables us to investigate algebraically what assumptions are needed for estimating PNS
and from what type of data. In the next section (Section 4.5.1, Eq. (4.42)), we see that indeed,
PNS can be estimated if we assume monotonicity, namely, that irradiation cannot cause the
recurrence of a tumor that was about to remit. Moreover, under monotonicity, experimental
data are sufficient to conclude

PNS = P(Y = 1|do(X = 1)) − P(Y = 1|do(X = 0)) (4.26)

For example, if we rely on the experimental data of Fisher et al. (2002), this formula permits
us to conclude that Ms Daily’s PNS is

PNS = 0.86 − 0.61 = 0.25

This gives her a 25% chance that her tumor is the type that responds to treatment—specifically,
that it will remit under lumpectomy plus irradiation but will recur under lumpectomy alone.
Such quantification of individual risks is extremely important in personal decision making,
and estimates of such risks from population data can only be inferred through counterfactual
analysis and appropriate assumptions.

4.4.4 Discrimination in Hiring

Example 4.4.4 Mary files a law suit against the New York-based XYZ International, alleging
discriminatory hiring practices. According to her, she has applied for a job with XYZ Interna-
tional, and she has all the credentials for the job, yet she was not hired, allegedly because she
mentioned, during the course of her interview, that she is gay. Moreover, she claims, the hiring
record of XYZ International shows consistent preferences for straight employees. Does she
have a case? Can hiring records prove whether XYZ International was discriminating when
declining her job application?
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At the time of writing, U.S. law doesn’t specifically prohibit employment discrimination
on the basis of sexual orientation, but New York law does. And New York defines discrim-
ination in much the same way as federal law. U.S. courts have issued clear directives as to
what constitutes employment discrimination. According to law makers, “The central question
in any employment-discrimination case is whether the employer would have taken the same
action had the employee been of a different race (age, sex, religion, national origin, etc.) and
everything else had been the same.” (In Carson vs Bethlehem Steel Corp., 70 FEP Cases 921,
7th Cir. (1996).)

The first thing to note in this directive is that it is not a population-based criterion, but
one that appeals to the individual case of the plaintiff. The second thing to note is that it is
formulated in counterfactual terminology, using idioms such as “would have taken,” “had the
employee been,” and “had been the same.” What do they mean? Can one ever prove how an
employer would have acted had Mary been straight? Certainly, this is not a variable that we
can intervene upon in an experimental setting. Can data from an observational study prove an
employer discriminating?

It turns out that Mary’s case, though superficially different from Example 4.4.3, has a lot
in common with the problem Ms Smith faced over her unsuccessful cancer treatment. The
probability that Mary’s nonhiring is due to her sexual orientation can, similarly to Ms Smith’s
cancer treatment, be expressed using the probability of sufficiency:

PS = P(Y1 = 1|X = 0,Y = 0)

In this case, Y stands for Mary’s hiring, and X stands for the interviewer’s perception of
Mary’s sexual orientation. The expression reads: “the probability that Mary would have been
hired had the interviewer perceived her as straight, given that the interviewer perceived her as
gay, and she was not hired.” (Note that the variable in question is the interviewer’s perception
of Mary’s sexual orientation, not the orientation itself, because an intervention on perception
is quite simple in this case—we need only to imagine that Mary never mentioned that she is
gay; hypothesizing a change in Mary’s actual orientation, although formally acceptable, brings
with it an aura of awkwardness.)

We show in 4.5.2 that, although discrimination cannot be proved in individual cases, the
probability that such discrimination took place can be determined, and this probability may
sometimes reach a level approaching certitude. The next example examines how the problem
of discrimination—in this case on gender, not sexual orientation may appear to a policy maker,
rather than a juror.

4.4.5 Mediation and Path-disabling Interventions

Example 4.4.5 A policy maker wishes to assess the extent to which gender disparity in hir-
ing can be reduced by making hiring decisions gender-blind, rather than eliminating gender
inequality in education or job training. The former concerns the “direct effect” of gender
on hiring, whereas the latter concerns the “indirect effect,” or the effect mediated via job
qualification.
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In this example, fighting employers’ prejudices and launching educational reforms are two 
contending policy options that involve costly investments and different implementation 
strategies. Knowing in advance which of the two, if successful, would have a greater impact 
on reducing hiring disparity is essential for planning, and depends critically on mediation 
analysis for resolution. For example, knowing that current hiring disparities are due primarily 
to employers’ prejudices would render educational reforms superfluous, a fact that may save 
substantial resources. Note, however, that the policy decisions in this example concern the 
enabling and disabling of processes rather than lowering or raising values of specific vari-
ables. The educational reform program calls for disabling current educational practices and 
replacing them with a new program in which women obtain the same educational opportuni-
ties as men. The hiring-based proposal calls for disabling the current hiring process and 
replacing it with one in which gender plays no role in hiring decisions.

Because we are dealing with disabling processes rather than changing levels of variables,
there is no way we can express the effect of such interventions using a do-operator, as we
did in the mediation analysis of Section 3.7. We can express it, however, in a counterfactual
language, using the desired end result as an antecedent. For example, if we wish to assess the
hiring disparity after successfully implementing gender-blind hiring procedures, we impose
the condition that all female applicants be treated like males as an antecedent and proceed to
estimate the hiring rate under such a counterfactual condition.

The analysis proceeds as follows: the hiring status (Y) of a female applicant with qualifi-
cation Q = q, given that the employer treats her as though she is a male is captured by the
counterfactual YX=1,Q=q, where X = 1 refers to being a male. But since the value q would vary
among applicants, we need to average this quantity according to the distribution of female
qualification, giving

∑
qE YX=1,Q=q P(Q = q|X = 0). Male applicants would have a similar

chance at hiring except that the average is governed by the distribution of male qualification,
giving ∑

q

E[YX=1,Q=q]P(Q = q|X = 1)

If we subtract the two quantities, we get∑
q

E[YX=1,Q=q][P(Q = q|X = 0) − P(Q = q|X = 1)]

which is the indirect effect of gender on hiring, mediated by qualification. We call this effect
the natural indirect effect (NIE), because we allow the qualification Q to vary naturally from
applicant to applicant, as opposed to the controlled direct effect in Chapter 3, where we held
the mediator at a constant level for the entire population. Here we merely disable the capacity
of Y to respond to X but leave its response to Q unaltered.

The next question to ask is whether such a counterfactual expression can be identified from
data. It can be shown (Pearl 2001) that, in the absence of confounding the NIE can be estimated
by conditional probabilities, giving

NIE =
∑

q

E[Y|X = 1,Q = q][P(Q = q|X = 0) − P(Q = q|X = 1)]

[ ]
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This expression is known as the mediation formula. It measures the extent to which the effect
of X on Y is explained by its effect on the mediator Q. Counterfactual analysis permits us to
define and assess NIE by “freezing” the direct effect of X on Y , and allowing the mediator (Q)
of each unit to react to X in a natural way, as if no freezing took place.

The mathematical tools necessary for estimating the various nuances of mediation are sum-
marized in Section 4.5.

4.5 Mathematical Tool Kits for Attribution and Mediation

As we examined the practical applications of counterfactual analysis in Section 4.4, we noted
several recurring patterns that shared mathematical expressions as well as methods of solu-
tion. The first was the effect of treatment on the treated, ETT , whose syntactic signature
was the counterfactual expression E[Yx|X = x′], with x and x′ two distinct values of X. We
showed that problems as varied as recruitment to a program (Section 4.4.1) and additive
interventions (Example 4.4.2) rely on the estimation of this expression, and we have listed
conditions under which estimation is feasible, as well as the resulting estimand (Eqs. (4.21)
and (4.8)).

Another recurring pattern appeared in problems of attribution, such as personal decision
problems (Example 4.4.3) and possible cases of discrimination (Example 4.4.4). Here, the
pattern was the expression for the probability of necessity:

PN = P(Y0 = 0|X = 1,Y = 1)

The probability of necessity also pops up in problems of legal liability, where it reads: “The
probability that the damage would not have occurred had the action not been taken (Y0 = 0), 
given that, in fact, the damage did occur (Y = 1) and the action was taken (X = 1).” Section 
4.5.1 summarizes mathematical results that will enable readers to estimate (or bound) PN using 
a combination of observational and experimental data.

Finally, in questions of mediation (Example 4.4.5) the key counterfactual expression was

E[Yx,Mx′
]

which reads, “The expected outcome (Y) had the treatment been X = x and, simultaneously,
had the mediator M attained the value (Mx′ ) it would have attained had X been x′”. Section 4.5.2
will list the conditions under which this “nested” counterfactual expression can be estimated,
as well as the resulting estimands and their interpretations.

4.5.1 A Tool Kit for Attribution and Probabilities of Causation

Assuming binary events, with X = x and Y = y representing treatment and outcome, respec-
tively, and X = x′, Y = y′ their negations, our target quantity is defined by the English
sentence:

“Find the probability that if X had been x′, Y would be y′, given that, in reality, X
is x and Y is y.”
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Mathematically, this reads

PN(x, y) = P(Yx′ = y′|X = x,Y = y) (4.27)

This counterfactual quantity, named “probability of necessity” (PN), captures the legal cri-
terion of “but for,” according to which judgment in favor of a plaintiff should be made if and
only if it is “more probable than not” that the damage would not have occurred but for the
defendant’s action (Robertson 1997).

Having written a formal expression for PN, Eq. (4.27), we can move on to the identification
phase and ask what assumptions permit us to identify PN from empirical studies, be they
observational, experimental, or a combination thereof.

Mathematical analysis of this problem (described in (Pearl 2000, Chapter 9)) yields the 
following results:

Theorem 4.5.1 If Y is monotonic relative to X, that is, Y1(u) ≥ Y0(u) for all u, then PN is
identifiable whenever the causal effect P(y|do(x)) is identifiable, and

PN =
P(y) − P(y|do(x′))

P(x, y)
(4.28)

or, substituting P(y) = P(y|x)P(x) + P(y|x′)(1 − P(x)), we obtain

PN =
P(y|x) − P(y|x′)

P(y|x) +
P(y|x′) − P(y|do(x′))

P(x, y)
(4.29)

The first term on the r.h.s. of (4.29) is called the excess risk ratio (ERR) and is often used
in court cases in the absence of experimental data (Greenland 1999). It is also known as the
Attributable Risk Fraction among the exposed (Jewell 2004, Chapter 4.7). The second term (the
confounding factor (CF)) represents a correction needed to account for confounding bias, that
is, P(y|do(x′)) ≠ P(y|x′). Put in words, confounding occurs when the proportion of population
for whom Y = y, when X is set to x′ for everyone is not the same as the proportion of the
population for whom Y = y among those acquiring X = x′ by choice. For instance, suppose
there is a case brought against a car manufacturer, claiming that its car’s faulty design led to
a man’s death in a car crash. The ERR tells us how much more likely people are to die in
crashes when driving one of the manufacturer’s cars. If it turns out that people who buy the
manufacturer’s cars are more likely to drive fast (leading to deadlier crashes) than the general
population, the second term will correct for that bias.

Equation (4.29) thus provides an estimable measure of necessary causation, which can be
used for monotonic Yx(u) whenever the causal effect P(y|do(x)) can be estimated, be it from
randomized trials or from graph-assisted observational studies (e.g., through the backdoor cri-
terion). More significantly, it has also been shown (Tian and Pearl 2000) that the expression
in (4.28) provides a lower bound for PN in the general nonmonotonic case. In particular, the
upper and lower bounds on PN are given by

max

{
0,

P(y) − P(y|do(x′))
P(x, y)

}
≤ PN ≤ min

{
1,

P(y′|do(x′)) − P(x′, y′)
P(x, y)

}
(4.30)

In drug-related litigation, it is not uncommon to obtain data from both experimental and
observational studies. The former is usually available from the manufacturer or the agency
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that approved the drug for distribution (e.g., FDA), whereas the latter is often available from
surveys of the population.

A few algebraic steps allow us to express the lower bound (LB) and upper bound (UB) as

LB = ERR + CF

UB = ERR + q + CF (4.31)

where ERR, CF, and q are defined as follows:

CF ≜ [P(y|x′) − P(yx′ )]∕P(x, y) (4.32)

ERR ≜ 1 − 1∕RR = 1 − P(y|x′)∕P(y|x) (4.33)

q ≜ P(y′|x)∕P(y|x) (4.34)

Here, CF represents the normalized degree of confounding among the unexposed (X = x′),
ERR is the “excess risk ratio” and q is the ratio of negative to positive outcomes among the
exposed.

Figure 4.5(a) and (b) depicts these bounds as a function of ERR, and reveals three useful
features. First, regardless of confounding, the interval UB–LB remains constant and depends
on only one observable parameter, P(y′|x)∕P(y|x). Second, the CF may raise the lower bound
to meet the criterion of “more probable than not,” PN >

1
2
, when the ERR alone would not

suffice. Lastly, the amount of “rise” to both bounds is given by CF, which is the only estimate
needed from the experimental data; the causal effect P(yx) − P(yx′ ) is not needed.

Theorem 4.5.1 further assures us that, if monotonicity can be assumed, the upper and lower
bounds coincide, and the gap collapses entirely, as shown in Figure 4.5(b). This collapse does
not reflect q = 0, but a shift from the bounds of (4.30) to the identified conditions of (4.28).

If it is the case that the experimental and survey data have been drawn at random from
the same population, then the experimental data can be used to estimate the counterfactuals

0 1ERR

PN
Upper
bound

PN
Lower
bound

1

PN

1

PN

CF

(b)(a)

CF

ERR 10

q

PN

Figure 4.5 (a) Showing how probabilities of necessity (PN) are bounded, as a function of the excess
risk ratio (ERR) and the confounding factor (CF) (Eq. (4.31)); (b) showing how PN is identified when
monotonicity is assumed (Theorem 4.5.1)
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of interest, for example, P(Yx = y), for the observational as well as experimental sampled
populations.

Example 4.5.1 (Attribution in Legal Setting) A lawsuit is filed against the manufacturer of
drug x, charging that the drug is likely to have caused the death of Mr A, who took it to relieve
back pains. The manufacturer claims that experimental data on patients with back pains show
conclusively that drug x has only minor effects on death rates. However, the plaintiff argues that
the experimental study is of little relevance to this case because it represents average effects on
patients in the study, not on patients like Mr A who did not participate in the study. In particular,
argues the plaintiff, Mr A is unique in that he used the drug of his own volition, unlike subjects
in the experimental study, who took the drug to comply with experimental protocols. To support
this argument, the plaintiff furnishes nonexperimental data on patients who, like Mr A, chose
drug x to relieve back pains but were not part of any experiment, and who experienced lower
death rates than those who didn’t take the drug. The court must now decide, based on both the
experimental and nonexperimental studies, whether it is “more probable than not” that drug
x was in fact the cause of Mr A’s death.

To illustrate the usefulness of the bounds in Eq. (4.30), consider (hypothetical) data asso-
ciated with the two studies shown in Table 4.5. (In the analyses below, we ignore sampling
variability.)

The experimental data provide the estimates

P(y|do(x)) = 16∕1000 = 0.016 (4.35)

P(y|do(x′)) = 14∕1000 = 0.014 (4.36)

whereas the nonexperimental data provide the estimates

P(y) = 30∕2000 = 0.015 (4.37)

P(x, y) = 2∕2000 = 0.001 (4.38)

P(y|x) = 2∕1000 = 0.002 (4.39)

P(y|x′) = 28∕1000 = 0.028 (4.40)

Table 4.5 Experimental and nonexperimental data used to illustrate the estimation
of PN, the probability that drug x was responsible for a person’s death (y)

Experimental Nonexperimental

do(x) do(x′) x x′

Deaths (y) 16 14 2 28
Survivals (y′) 984 986 998 972
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Assuming that drug x can only cause (but never prevent) death, monotonicity holds, and
Theorem 4.5.1 (Eq. (4.29)) yields

PN =
P(y|x) − P(y|x′)

P(y|x) +
P(y|x′) − P(y|do(x′))

P(x, y)

= 0.002 − 0.028
0.002

+ 0.028 − 0.014
0.001

= −13 + 14 = 1 (4.41)

We see that while the observational ERR is negative (−13), giving the impression that the
drug is actually preventing deaths, the bias-correction term (+14) rectifies this impression and
sets the probability of necessity (PN) to unity. Moreover, since the lower bound of Eq. (4.30)
becomes 1, we conclude that PN = 1.00 even without assuming monotonicity. Thus, the plain-
tiff was correct; barring sampling errors, the data provide us with 100% assurance that drug x
was in fact responsible for the death of Mr A.

To complete this tool kit for attribution, we note that the other two probabilities that came up
in the discussion on personal decision-making (Example 4.4.3), PS and PNS, can be bounded
by similar expressions; see (Pearl 2000, Chapter 9) and (Tian and Pearl 2000).

In particular, when Yx(u) is monotonic, we have

PNS = P(Yx = 1,Yx′ = 0)

= P(Yx = 1) − P(Yx′ = 1) (4.42)

as asserted in Example 4.4.3, Eq. (4.26).

Study questions

Study question 4.5.1

Consider the dilemma faced by Ms Jones, as described in Example 4.4.3. Assume that, in
addition to the experimental results of Fisher et al. (2002), she also gains access to an obser-
vational study, according to which the probability of recurrent tumor in all patients (regardless
of irradiation) is 30%, whereas among the recurrent cases, 70% did not choose therapy. Use
the bounds provided in Eq. (4.30) to update her estimate that her decision was necessary
for remission.

4.5.2 A Tool Kit for Mediation

The canonical model for a typical mediation problem takes the form:

t = f
T
(u

T
) m = f

M
(t, u

M
) y = f

Y
(t,m, u

Y
) (4.43)

where T (treatment), M (mediator), and Y (outcome) are discrete or continuous random vari-
ables, fT , fM , and fY are arbitrary functions, and UT ,UM ,UY represent, respectively, omit-
ted factors that influence T ,M, and Y . The triplet U = (UT ,UM ,UY ) is a random vector that
accounts for all variations among individuals.

In Figure 4.6(a), the omitted factors are assumed to be arbitrarily distributed but mutually
independent. In Figure 4.6(b), the dashed arcs connecting UT and UM (as well as UM and UT )
encode the understanding that the factors in question may be dependent.
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UM UM

UY
UY

(b)(a)

M

YTYT

M

UT UT

fM (t, uM) fM (t, uM)
fY (t, m, uY) fY (t, m, uY)

Figure 4.6 (a) The basic nonparametric mediation model, with no confounding. (b) A confounded
mediation model in which dependence exists between U

M
and (U

T
,U

Y
)

Counterfactual definition of direct and indirect effects
Using the structural model of Eq. (4.43) and the counterfactual notation defined in

Section 4.2.1, four types of effects can be defined for the transition from T = 0 to T = 1.
Generalizations to arbitrary reference points, say from T = t to T = t′, are straightforward1:

(a) Total effect –

TE = E[Y1 − Y0]

= E[Y|do(T = 1)] − E[Y|do(T = 0)] (4.44)

TE measures the expected increase in Y as the treatment changes from T = 0 to T = 1, while
the mediator is allowed to track the change in T naturally, as dictated by the function fM .

(b) Controlled direct effect –

CDE(m) = E[Y1,m − Y0,m]

= E[Y|do(T = 1,M = m)] − E[Y|do(T = 0,M = m)] (4.45)

CDE measures the expected increase in Y as the treatment changes from T = 0 to T = 1, while
the mediator is set to a specified level M = m uniformly over the entire population.
(c) Natural direct effect –

NDE = E[Y1,M0
− Y0,M0

] (4.46)

NDE measures the expected increase in Y as the treatment changes from T = 0 to T = 1, while
the mediator is set to whatever value it would have attained (for each individual) prior to the
change, that is, under T = 0.
(d) Natural indirect effect –

NIE = E[Y0,M1
− Y0,M0

] (4.47)

NIE measures the expected increase in Y when the treatment is held constant, at T = 0, and M
changes to whatever value it would have attained (for each individual) under T = 1. It captures,
therefore, the portion of the effect that can be explained by mediation alone, while disabling
the capacity of Y to respond to X.

1 These definitions apply at the population levels; the unit-level effects are given by the expressions under the expec-
tation. All expectations are taken over the factors U

M
and U

Y
.



�

� �

�

122 Causal Inference in Statistics

We note that, in general, the total effect can be decomposed as

TE = NDE − NIEr (4.48)

where NIEr stands for the NIE under the reverse transition, from T = 1 to T = 0. This implies
that NIE is identifiable whenever NDE and TE are identifiable. In linear systems, where reversal
of transitions amounts to negating the signs of their effects, we have the standard additive
formula, TE = NDE + NIE.

We further note that TE and CDE(m) are do-expressions and can, therefore, be estimated
from experimental data or in observational studies using the backdoor or front-door adjust-
ments. Not so for the NDE and NIE; a new set of assumptions is needed for their identification.
Conditions for identifying natural effects

The following set of conditions, marked A-1 to A-4, are sufficient for identifying both direct
and indirect natural effects.

We can identify the NDE and NIE provided that there exists a set W of measured covariates
such that

A-1 No member of W is a descendant of T .
A-2 W blocks all backdoor paths from M to Y (after removing T → M and T → Y).
A-3 The W-specific effect of T on M is identifiable (possibly using experiments or adjust-

ments).
A-4 The W-specific joint effect of {T ,M} on Y is identifiable (possibly using experiments or

adjustments).

Theorem 4.5.2 (Identification of the NDE) When conditions A-1 and A-2 hold, the natural
direct effect is experimentally identifiable and is given by

NDE =
∑

m

∑
w

[E[Y|do(T = 1,M = m),W = w] − E[Y|do(T = 0,M = m),W = w]]

× P(M = m|do(T = 0),W = w)P(W = w) (4.49)

The identifiability of the do-expressions in Eq. (4.49) is guaranteed by conditions A-3 and A-4
and can be determined using the backdoor or front-door criteria.

Corollary 4.5.1 If conditions A-1 and A-2 are satisfied by a set W that also deconfounds the
relationships in A-3 and A-4, then the do-expressions in Eq. (4.49) are reducible to conditional
expectations, and the natural direct effect becomes

NDE =
∑

m

∑
w

[E[Y|T = 1,M = m,W = w] − E[Y|T = 0,M = m,W = w]]

× P(M = m|T = 0,W = w)P(W = w) (4.50)

In the nonconfounding case (Figure 4.6(a)), NDE reduces to

NDE =
∑

m

[E[Y |T = 1,M = m] − E[Y |T = 0,M = m]]P(M = m |T = 0). (4.51)
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Similarly, using (4.48) and TE = E[Y|T = 1] − E[Y|T = 0], NIE becomes

NIE =
∑

m

E[Y |T = 0,M = m][P(M = m |T = 1) − P(M = m |T = 0)] (4.52)

The last two expressions are known as the mediation formulas. We see that while NDE is a
weighted average of CDE, no such interpretation can be given to NIE.

The counterfactual definitions of NDE and NIE (Eqs. (4.46) and (4.47)) permit us to give
these effects meaningful interpretations in terms of “response fractions.” The ratio NDE∕TE
measures the fraction of the response that is transmitted directly, with M “frozen.” NIE∕TE
measures the fraction of the response that may be transmitted through M, with Y blinded to
X. Consequently, the difference (TE − NDE)∕TE measures the fraction of the response that is
necessarily due to M.
Numerical example: Mediation with binary variables

To anchor these mediation formulas in a concrete example, we return to the encouragement-
design example of Section 4.2.3 and assume that T = 1 stands for participation in an enhanced
training program, Y = 1 for passing the exam, and M = 1 for a student spending more than
3 hours per week on homework. Assume further that the data described in Tables 4.6 and 4.7
were obtained in a randomized trial with no mediator-to-outcome confounding (Figure 4.6(a)).
The data shows that training tends to increase both the time spent on homework and the rate
of success on the exam. Moreover, training and time spent on homework together are more
likely to produce success than each factor alone.

Our research question asks for the extent to which students’ homework contributes to their
increased success rates regardless of the training program. The policy implications of such
questions lie in evaluating policy options that either curtail or enhance homework efforts,
for example, by counting homework effort in the final grade or by providing students with

Table 4.6 The expected success (Y) for treated (T = 1) and untreated (T = 0)
students, as a function of their homework (M)

Treatment Homework Success rate
T M E(Y|T = t,M = m)

1 1 0.80
1 0 0.40
0 1 0.30
0 0 0.20

Table 4.7 The expected homework (M) done by treated 
(T =1) and untreated (T =0) students

Treatment Homework
T E(M|T = t)

0 0.40
1 0.75
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adequate work environments at home. An extreme explanation of the data, with significant
impact on educational policy, might argue that the program does not contribute substantively to
students’ success, save for encouraging students to spend more time on homework, an encour-
agement that could be obtained through less expensive means. Opposing this theory, we may
have teachers who argue that the program’s success is substantive, achieved mainly due to the
unique features of the curriculum covered, whereas the increase in homework efforts cannot
alone account for the success observed.

Substituting the data into Eqs. (4.51) and (4.52) gives

NDE = (0.40 − 0.20)(1 − 0.40) + (0.80 − 0.30)0.40 = 0.32

NIE = (0.75 − 0.40)(0.30 − 0.20) = 0.035

TE = 0.80 × 0.75 + 0.40 × 0.25 − (0.30 × 0.40 + 0.20 × 0.60) = 0.46

NIE∕TE = 0.07,NDE∕TE = 0.696, 1 − NDE∕TE = 0.304

We conclude that the program as a whole has increased the success rate by 46% and that a
significant portion, 30.4%, of this increase is due to the capacity of the program to stimulate
improved homework effort. At the same time, only 7% of the increase can be explained by
stimulated homework alone without the benefit of the program itself.

Study questions

Study question 4.5.2

Consider the structural model:

y = 𝛽1m + 𝛽2t + uy (4.53)

m = 𝛾1t + um (4.54)

(a) Use the basic definition of the natural effects (Eqs. (4.46) and (4.47)) to determine TE,
NDE, and NIE.

(b) Repeat (a) assuming that uy is correlated with um.

Study question 4.5.3

Consider the structural model:

y = 𝛽1m + 𝛽2t + 𝛽3tm + 𝛽4w + uy (4.55)

m = 𝛾1t + 𝛾2w + um (4.56)

w = 𝛼t + uw (4.57)

with 𝛽3tm representing an interaction term.
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(a) Use the basic definition of the natural effects (Eqs. (4.46) and (4.47)) (treating M as
the mediator), to determine the portion of the effect for which mediation is necessary
(TE − NDE) and the portion for which mediation is sufficient (NIE). Hint: Show that:

NDE = 𝛽2 + 𝛼𝛽4 (4.58)

NIE = 𝛽1(𝛾1 + 𝛼𝛾2) (4.59)

TE = 𝛽2 + (𝛾1 + 𝛼𝛾2)(𝛽3 + 𝛽1) + 𝛼𝛽4 (4.60)

TE − NDE = (𝛽1 + 𝛽3)(𝛾1 + 𝛼𝛾2) (4.61)

(b) Repeat, using W as the mediator.

Study question 4.5.4

Apply the mediation formulas provided in this section to the discrimination case discussed
in Section 4.4.4, and determine the extent to which ABC International practiced discrimina-
tion in their hiring criteria. Use the data in Tables 4.6 and 4.7, with T = 1 standing for male
applicants, M = 1 standing for highly qualified applicants, and Y = 1 standing for hiring.
(Find the proportion of the hiring disparity that is due to gender, and the proportion that could
be explained by disparity in qualification alone.)

Ending Remarks

The analysis of mediation is perhaps the best arena to illustrate the effectiveness of the
counterfactual-graphical symbiosis that we have been pursuing in this book. If we examine
the identifying conditions A-1 to A-4, we find four assertions about the model that are not
too easily comprehended. To judge their plausibility in any given scenario, without the graph
before us, is unquestionably a formidable, superhuman task. Yet the symbiotic analysis frees
investigators from the need to understand, articulate, examine, and judge the plausibility of
the assumptions needed for identification. Instead, the method can confirm or disconfirm
these assumptions algorithmically from a more reliable set of assumption, those encoded in
the structural model itself. Once constructed, the causal diagram allows simple path-tracing
routines to replace much of the human judgment deemed necessary in mediation analysis;
the judgment invoked in the construction of the diagrams is sufficient, and that construction
requires only judgment about causal relationships among realizable variables and their
disturbances.

Bibliographical Notes for Chapter 4

The definition of counterfactuals as derivatives of structural equations, Eq. (4.5), was
introduced by Balke and Pearl (1994a,b), who applied it to the estimation of probabilities of
causation in legal settings. The philosopher David Lewis defined counterfactuals in terms of
similarity among possible worlds Lewis (1973). In statistics, the notation Yx(u) was devised
by Neyman (1923), to denote the potential response of unit u in a controlled randomized trial,
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under treatment X = x. It remained relatively unnoticed until Rubin (1974) treated Yx as a
random variable and connected it to observed variable via the consistency rule of Eq. (4.6),
which is a theorem in both Lewis’s logic and in structural models. The relationships among
these three formalisms of counterfactuals are discussed at length in Pearl (2000, Chapter 7),
where they are shown to be logically equivalent; a problem solved in one framework would
yield the same solution in another. Rubin’s framework, known as “potential outcomes,”
differs from the structural account only in the language in which problems are defined, hence,
in the mathematical tools available for their solution. In the potential outcome framework,
problems are defined algebraically as assumptions about counterfactual independencies, also
known as “ignorability assumptions.” These types of assumptions, exemplified in Eq. (4.15),
may become too complicated to interpret or verify by unaided judgment. In the structural
framework, on the other hand, problems are defined in the form of causal graphs, from which
dependencies of counterfactuals (e.g., Eq. (4.15)) can be derived mechanically. The reason
some statisticians prefer the algebraic approach is, primarily, because graphs are relatively
new to statistics. Recent books in social science (e.g., Morgan and Winship 2014) and in
health science (e.g., VanderWeele 2015) are taking the hybrid, graph-counterfactual approach
pursued in our book.

The section on linear counterfactuals is based on Pearl (2009, pp. 389–391). Recent
advances are provided in Cai and Kuroki (2006) and Chen and Pearl (2014). Our discussion
of ETT (Effect of Treatment on the Treated), as well as additive interventions, is based on
Shpitser and Pearl (2009), which provides a full characterization of models in which ETT is
identifiable.

Legal questions of attribution, as well as probabilities of causation are discussed at length in
Greenland (1999) who pioneered the counterfactual approach to such questions. Our treatment
of PN,PS, and PNS is based on Tian and Pearl (2000) and Pearl (2000, Chapter 9). Recent
results, including the tool kit of Section 4.5.1, are given in Pearl (2015a).

Mediation analysis (Sections 4.4.5 and 4.5.2), as we remarked in Chapter 3, has a long tra-
dition in the social sciences (Duncan 1975; Kenny 1979), but has gone through a dramatic
revolution through the introduction of counterfactual analysis. A historical account of the con-
ceptual transition from the statistical approach of Baron and Kenny (1986) to the modern,
counterfactual-based approach of natural direct and indirect effects (Pearl 2001; Robins and
Greenland 1992) is given in Sections 1 and 2 of Pearl (2014a). The recent text of VanderWeele
(2015) enhances this development with new results and new applications. Additional advances
in mediation, including sensitivity analysis, bounds, multiple mediators, and stronger identi-
fying assumptions are discussed in Imai et al. (2010) and Muthén and Asparouhov (2015).

The mediation tool kit of Section 4.5.2 is based on Pearl (2014a). Shpitser (2013) has derived
a general criterion for identifying indirect effects in graphs.




