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Probabilities of causation: Bounds and identification
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This paper deals with the problem of estimating the probability of causation, that is,
the probability that one event was the real cause of another, in a given scenario. Starting
from structural-semantical definitions of the probabilities of necessary or sufficient causation
(or both), we show how to bound these quantities from data obtained in experimental and
observational studies, under general assumptions concerning the data-generating process.
In particular, we strengthen the results of Pearl [39] by presenting sharp bounds based
on combined experimental and nonexperimental data under no process assumptions, as
well as under the mild assumptions of exogeneity (no confounding) and monotonicity (no
prevention). These results delineate more precisely the basic assumptions that must be
made before statistical measures such as the excess-risk-ratio could be used for assessing
attributional quantities such as the probability of causation.

1. Introduction

Assessing the likelihood that one event was the cause of another guides much
of what we understand about (and how we act in) the world. For example, few of us
would take aspirin to combat headache if it were not for our conviction that, with high
probability, it was aspirin that “actually caused” relief in previous headache episodes.
Likewise, according to common judicial standard, judgment in favor of plaintiff should
be made if and only if it is “more probable than not” that the defendant’s action was
a cause for the plaintiff’s injury (or death). This paper deals with the question of
estimating the probability of causation from statistical data.

Causation has two faces, necessary and sufficient. The most common conception
of causation – that the effect E would not have occurred in the absence of the cause C
– captures the notion of “necessary causation”. Competing notions such as “sufficient
cause” and “necessary-and-sufficient cause” are also of interest in a number of appli-
cations, and this paper analyzes the relationships among the three notions. Although
the distinction between necessary and sufficient causes goes back to J.S. Mill [35], it
has received semi-formal explications only in the 1960s – via conditional probabili-
ties [20] and logical implications [32]. These explications suffer from basic semantical
difficulties [30;40, pp. 249–256, 313–316] and they do not yield effective procedures
for computing probabilities of causes. This paper defines probabilities of causes in a
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language of counterfactuals that is based on a simple model-theoretic semantics (to be
formulated in section 2).

Robins and Greenland [44] gave a counterfactual definition for the probability of
necessary causation taking counterfactuals as primitives, and assuming that one is in
possession of a consistent joint probability function on both ordinary and counterfac-
tual events. Pearl [39] gave definitions for the probabilities of necessary or sufficient
causation (or both) based on structural model semantics, which defines counterfactuals
as quantities derived from modifiable sets of functions [17,18,23,40]. The structural
models semantics, as we shall see in section 2, leads to effective procedures for com-
puting probabilities of counterfactual expressions from a given causal theory [4,5].
Additionally, this semantics can be characterized by a complete set of axioms [18,23],
which we will use as inference rules in our analysis.

The central aim of this paper is to estimate probabilities of causation from fre-
quency data, as obtained in experimental and observational statistical studies. In gen-
eral, such probabilities are non-identifiable, that is, non-estimable from frequency data
alone. One factor that hinders identifiability is confounding – the cause and the effect
may both be influenced by a third factor. Moreover, even in the absence of confound-
ing, probabilities of causation are sensitive to the data-generating process, namely, the
functional relationships that connect causes and effects [4,44]. Nonetheless, useful
information in the form of bounds on the probabilities of causation can be extracted
from empirical data without actually knowing the data-generating process. These
bounds improve when data from observational and experimental studies are combined.
Additionally, under certain assumptions about the data-generating process (such as ex-
ogeneity and monotonicity), the bounds may collapse to point estimates, which means
that the probabilities of causation are identifiable – they can be expressed in terms of
probabilities of observed quantities. These estimates will be recognized as familiar ex-
pressions that often appear in the literature as measures of attribution. Our analysis thus
explicates the assumptions about the data-generating process that must be ascertained
before those measures can legitimately be interpreted as probabilities of causation.

The analysis of this paper leans heavily on results reported in [39;40, pp. 283–
308]. Pearl derived bounds and identification conditions under certain assumptions of
exogeneity and monotonicity, and this paper improves on Pearl’s results by narrowing
his bounds and weakening his assumptions. In particular, we show that for most of
Pearl’s results, the assumption of strong exogeneity can be replaced by weak exogeneity
(to be defined in section 4.3). Additionally, we show that the point estimates that Pearl
obtained under the assumption of monotonicity (definition 14) constitute valid lower
bounds when monotonicity is not assumed. Finally, we prove that the bounds derived
by Pearl, as well as those provided in this paper are sharp, that is, they cannot be
improved without strengthening the assumptions.

The rest of the paper is organized as follows. Section 2 reviews the structural
model semantics of actions, counterfactuals and probability of counterfactuals. In sec-
tion 3 we present formal definitions for the probabilities of causation and briefly discuss
their applicability in epidemiology, artificial intelligence, and legal reasoning. In sec-
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tion 4 we systematically investigate the maximal information (about the probabilities
of causation) that can be obtained under various assumptions and from various types of
data. Section 5 illustrates, by example, how the results presented in this paper can be
applied to resolve issues of attribution in legal settings. Section 6 concludes the paper.

2. Structural model semantics

This section presents a brief summary of the structural-equation semantics of
counterfactuals as defined in [5,17,18,23]. Related approaches have been proposed
in [49] (see footnote 5) and [42]. For detailed exposition of the structural account and
its applications see [40].

Structural models are generalizations of the structural equations used in engi-
neering, biology, economics and social science.1 World knowledge is represented as
a collection of stable and autonomous relationships called “mechanisms”, each repre-
sented as a function, and changes due to interventions or hypothetical eventualities are
treated as local modifications of these functions.

A causal model is a mathematical object that assigns truth values to sentences
involving causal relationships, actions, and counterfactuals. We will first define causal
models, then discuss how causal sentences are evaluated in such models. We will re-
strict our discussion to recursive (or feedback-free) models; extensions to non-recursive
models can be found in [17,18,23].

Definition 1 (Causal model). A causal model is a triple

M = 〈U ,V ,F 〉
where

(i) U is a set of variables, called exogenous. (These variables will represent back-
ground conditions, that is, variables whose values are determined outside the
model.)

(ii) V is an ordered set {V1,V2, . . . ,Vn} of variables, called endogenous. (These
represent variables that are determined in the model, namely, by variables in
U ∪ V .)

(iii) F is a set of functions {f1, f2, . . . , fn} where each fi is a mapping from U ×
(V1× · · · ×Vi−1) to Vi. In other words, each fi tells us the value of Vi given the
values of U and all predecessors of Vi. Symbolically, the set of equations F can
be represented by writing 2

vi = fi(pai,ui), i = 1, . . . ,n,

1 Similar models, called “neuron diagrams” [22;31, p. 200] are used informally by philosophers to
illustrate chains of causal processes.

2 We use capital letters (e.g., X, Y ) as names of variables and sets of variables, and lower-case letters
(e.g., x, y) for specific values (called realizations) of the corresponding variables.
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where pai is any realization of a minimal set of variables PAi in V (connoting
parents) sufficient for representing fi.3 Likewise, Ui ⊆ U stands for a minimal
set of variables in U that is sufficient for representing fi.

Every causal model M can be associated with a directed graph, G(M ), in which
each node corresponds to a variable in V and the directed edges point from members
of PAi toward Vi (by convention, the exogenous variables are usually not shown
explicitly in the graph). We call such a graph the causal graph associated with M .
This graph merely identifies the endogenous variables PAi that have direct influence
on each Vi but it does not specify the functional form of fi.

Basic of our analysis are sentences involving actions or external interventions,
such as, “p will be true if we do q” where q is any elementary proposition. To evaluate
such sentences we need the notion of “submodel”.

Definition 2 (Submodel). Let M be a causal model, X be a set of variables in V ,
and x be a particular assignment of values to the variables in X. A submodel Mx of
M is the causal model

Mx = 〈U ,V ,Fx〉,

where

Fx = {fi: Vi /∈ X} ∪ {X = x}. (1)

In words, Fx is formed by deleting from F all functions fi corresponding to
members of set X and replacing them with the set of constant functions X = x.

Submodels represent the effect of actions and hypothetical changes, including
those dictated by counterfactual antecedents. If we interpret each function fi in F as
an independent physical mechanism and define the action do(X = x) as the minimal
change in M required to make X = x hold true under any u, then Mx represents the
model that results from such a minimal change, since it differs from M by only those
mechanisms that directly determine the variables in X. The transformation from M to
Mx modifies the algebraic content of F , which is the reason for the name modifiable
structural equations used in [18].4

Definition 3 (Effect of action). Let M be a causal model, X be a set of variables
in V , and x be a particular realization of X. The effect of action do(X = x) on M is
given by the submodel Mx.

3 A set of variables X is sufficient for representing a given function y = f (x, z) if f is trivial in Z –
that is, if for every x, z, z′ we have f (x, z) = f (x, z′).

4 Structural modifications date back to Marschak [33] and Simon [48]. An explicit translation of in-
terventions into “wiping out” equations from the model was first proposed by Strotz and Wold [52]
and later used in [14,38,50,51]. A similar notion of sub-model is introduced in Fine [13], though not
specifically for representing actions and counterfactuals.
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Definition 4 (Potential response). Let Y be a variable in V , let X be a subset of V ,
and let u be a particular value of U . The potential response of Y to action do(X = x)
in situation u, denoted Yx(u), is the (unique) solution for Y of the set of equations Fx.

We will confine our attention to actions in the form of do(X = x). Conditional
actions, of the form “do(X = x) if Z = z” can be formalized using the replacement
of equations by functions of Z, rather than by constants [37]. We will not consider
disjunctive actions, of the form “do(X = x or X = x′)”, since these complicate the
probabilistic treatment of counterfactuals.

Definition 5 (Counterfactual). Let Y be a variable in V , and let X be a subset of V .
The counterfactual expression “The value that Y would have obtained, had X been x”
is interpreted as denoting the potential response Yx(u).

Definition 5 thus interprets the counterfactual phrase “had X been x” in terms of
a hypothetical external action that modifies the actual course of history and enforces
the condition “X = x” with minimal change of mechanisms. This is a crucial step in
the semantics of counterfactuals [4], as it permits x to differ from the actual value X(u)
of X without creating logical contradiction; it also suppresses abductive inferences (or
backtracking) from the counterfactual antecedent X = x.5

It can easily be shown [17] that the counterfactual relationship just defined, Yx(u),
satisfies the following two properties:

• Effectiveness: For any two disjoint sets of variables, Y and W , we have

Yyw(u) = y. (2)

In words, setting the variables in W to w has no effect on Y , once we set the value
of Y to y.

• Composition: For any two disjoint sets of variables X and W , and any set of
variables Y ,

Wx(u) = w =⇒ Yxw(u) = Yx(u). (3)

In words, once we set X to x, setting the variables in W to the same values, w,
that they would attain (under x) should have no effect on Y .

Furthermore, effectiveness and composition are complete whenever M is recursive (i.e.,
G(M ) is acyclic) [18,23], that is, every property of counterfactuals that follows from
the structural model semantics can be derived by repeated application of effectiveness
and composition.

A corollary of composition is a property called consistency by Robins [43]:(
X(u) = x

)
=⇒

(
Yx(u) = Y (u)

)
. (4)

5 Simon and Rescher [49, p. 339] did not include this step in their account of counterfactuals and noted
that backward inferences triggered by the antecedents can lead to ambiguous interpretations.
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Consistency states that, if in a certain context u we find variable X at value x, and
we intervene and set X to that same value, x, we should not expect any change in the
response variable Y . This property will be used in several derivations of sections 3
and 4.

The structural formulation generalizes naturally to probabilistic systems, as is
seen below.

Definition 6 (Probabilistic causal model). A probabilistic causal model is a pair〈
M ,P (u)

〉
,

where M is a causal model and P (u) is a probability function defined over the domain
of U .

P (u), together with the fact that each endogenous variable is a function of U ,
defines a probability distribution over the endogenous variables. That is, for every set
of variables Y ⊆ V , we have

P (y) , P (Y = y) =
∑

{u|Y (u)=y}

P (u). (5)

The probability of counterfactual statements is defined in the same manner, through
the function Yx(u) induced by the submodel Mx. For example, the causal effect of x
on y is defined as

P (Yx = y) =
∑

{u|Yx(u)=y}

P (u). (6)

Likewise, a probabilistic causal model defines a joint distribution on coun-
terfactual statements, i.e., P (Yx = y,Zw = z) is defined for any sets of vari-
ables Y ,X,Z,W , not necessarily disjoint. In particular, P (Yx = y,X = x′) and
P (Yx = y,Yx′ = y′) are well defined for x 6= x′, and are given by

P (Yx = y,X = x′) =
∑

{u|Yx(u)=y&X(u)=x′}

P (u) (7)

and

P (Yx = y,Yx′ = y′) =
∑

{u|Yx(u)=y&Yx′ (u)=y′}

P (u). (8)

When x and x′ are incompatible, Yx and Yx′ cannot be measured simultaneously,
and it may seem meaningless to attribute probability to the joint statement “Y would be
y if X = x and Y would be y′ if X = x′”. Such concerns have been a source of recent
objections to treating counterfactuals as jointly distributed random variables [10]. The
definition of Yx and Yx′ in terms of two distinct submodels, driven by a standard
probability space over U , demonstrates that joint probabilities of counterfactuals have
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solid mathematical and conceptual underpinning and, moreover, these probabilities can
be encoded rather parsimoniously using P (u) and F .

In particular, the probabilities of causation analyzed in this paper (see equa-
tions (10)–(12)) require the evaluation of expressions of the form P (Yx′ = y′ | X =
x,Y = y) with x and y incompatible with x′ and y′, respectively. Equation (7) allows
the evaluation of this quantity as follows:

P
(
Yx′ = y′ | X = x,Y = y

)
=
P (Yx′ = y′,X = x,Y = y)

P (X = x,Y = y)

=
∑
u

P
(
Yx′(u) = y′

)
P (u | x, y). (9)

In other words, we first update P (u) to obtain P (u |x, y), then we use the updated distri-
bution P (u |x, y) to compute the expectation of the propositional variable Yx′(u) = y′.6

3. Probabilities of causation: Definitions

In this section, we present the definitions for the three aspects of causation as
defined in [39]. We use the counterfactual language and the structural model semantics
introduced in section 2. For notational simplicity, we limit the discussion to binary
variables; extension to multi-valued variables are straightforward (see [40, p. 286,
footnote 5]).

Definition 7 (Probability of necessity (PN)). Let X and Y be two binary variables in
a causal mode M , let x and y stand for the propositions X = true and Y = true,
respectively, and x′ and y′ for their complements. The probability of necessity is
defined as the expression

PN ,P (Yx′ = false | X = true,Y = true)

,P
(
y′x′ | x, y

)
. (10)

In other words, PN stands for the probability that event y would not have occurred
in the absence of event x, y′x′ , given that x and y did in fact occur.7

This quantity has applications in epidemiology, legal reasoning, and artificial
intelligence (AI). Epidemiologists have long been concerned with estimating the prob-

6 In our deterministic model, P (Yx′(u) = y′) takes on the values zero and one, but in models involving
intrinsic nondeterminism (see section 6), or memoryless stochastic fluctuations, P (Yx′(u) = y′) ex-
presses the residual uncertainty in Y , under the setting X = x′, in situation U = u. Equation (9) then
captures the uncertainty associated with the effect of action do(X = x′), conditioned on the pre-action
evidence X = x and Y = y.

7 Note a slight change in notation relative to that used section 2. Lower case letters (e.g., x, y) denoted
arbitrary values of variables in section 2, and now stand for propositions (or events). Note also the
abbreviations yx for Yx = true and y′x for Yx = false. Readers accustomed to writing “A > B” for
the counterfactual “B if it were A” can translate equation (10) to read PN , P (x′ > y′ | x, y).
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ability that a certain case of disease is attributable to a particular exposure, which is
normally interpreted counterfactually as “the probability that disease would not have
occurred in the absence of exposure, given that disease and exposure did in fact occur”.
This counterfactual notion, which Robins and Greenland [44] called the “probability
of causation”, measures how necessary the cause is for the production of the effect. It
is used frequently in lawsuits, where legal responsibility is at the center of contention
(see section 5).

Definition 8 (Probability of sufficiency (PS)).

PS , P
(
yx | y′,x′

)
. (11)

PS measures the capacity of x to produce y and, since “production” implies a
transition from the absence to the presence of x and y, we condition the probability
P (yx) on situations where x and y are both absent. Thus, mirroring the necessity of
x (as measured by PN), PS gives the probability that setting x would produce y in a
situation where x and y are in fact absent.

PS finds applications in policy analysis, AI, and psychology. A policy maker
may well be interested in the dangers that a certain exposure may present to the
healthy population [29]. Counterfactually, this notion is expressed as the “probability
that a healthy unexposed individual would have gotten the disease had he/she been
exposed”. In psychology, PS serves as the basis for Cheng’s [8] causal power theory,
which attempts to explain how humans judge causal strength among events. In AI, PS
plays a major role in the generation of explanations [40, pp. 221–223].

Definition 9 (Probability of necessity and sufficiency (PNS)).

PNS , P
(
yx, y′x′

)
. (12)

PNS stands for the probability that y would respond to x both ways, and therefore
measures both the sufficiency and necessity of x to produce y.

As illustrated above, PS assesses the presence of an active causal process capable
of producing the effect, while PN emphasizes the absence of alternative processes,
not involving the cause in question, that are capable of explaining the effect. In
legal settings, where the occurrence of the cause, x, and the effect, y, are fairly well
established, PN is the measure that draws most attention, and the plaintiff must prove
that y would not have occurred but for x [41]. Still, lack of sufficiency may weaken
arguments based on PN [21,34].

Although none of these quantities is sufficient for determining the others, they
are not entirely independent, as shown in the following lemma.

Lemma 1. The probabilities of causation satisfy the following relationship:

PNS =P (x, y)PN + P
(
x′, y′

)
PS. (13)
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Proof. Using the consistency condition of equation (4),

x⇒ (yx = y), x′ ⇒ (yx′ = y), (14)

we can write

yx ∧ y′x′ =
(
yx ∧ y′x′

)
∧
(
x ∨ x′

)
=
(
yx ∧ x ∧ y′x′

)
∨
(
yx ∧ y′x′ ∧ x′

)
=
(
y ∧ x ∧ y′x′

)
∨
(
yx ∧ y′ ∧ x′

)
.

Taking probabilities on both sides, and using the disjointness of x and x′, we obtain:

P
(
yx, y′x′

)
=P

(
y′x′ ,x, y

)
+ P

(
yx,x′, y′

)
=P

(
y′x′ | x, y

)
P (x, y) + P

(
yx | x′, y′

)
P
(
x′, y′

)
which proves the lemma. �

Definition 10 (Identifiability). Let Q(M ) be any quantity defined on a causal
model M . Q is identifiable in a class M of models iff any two models M1 and
M2 from M that satisfy PM1(v) = PM2 (v) also satisfy Q(M1) = Q(M2). In other
words, Q is identifiable if it can be determined uniquely from the probability distrib-
ution P (v) of the endogenous variables V .

The class M that we will consider when discussing identifiability will be deter-
mined by assumptions that one is willing to make about the model under study. For
example, if our assumptions consist of the structure of a causal graph G0, M will
consist of all models M for which G(M ) = G0. If, in addition to G0, we are also
willing to make assumptions about the functional form of some mechanisms in M ,
M will consist of all models M that incorporate those mechanisms, and so on.

Since all the causal measures defined above invoke conditionalization on y, and
since y is presumed affected by x, the antecedent of the counterfactual yx, we know
that none of these quantities is identifiable from knowledge of the structure G(M )
and the data P (v) alone, even under condition of no confounding. However, useful
information in the form of bounds may be derived for these quantities from P (v),
especially when knowledge about causal effects P (yx) and P (yx′) are also available.8

Moreover, under some general assumptions about the data-generating process, these
quantities may even be identified.

To formulate precisely what it means to identify a counterfactual quantity from
various types of data, we now generalize definition 10 to capture the notion of “iden-
tification from experiments”. By experiment we mean a prescribed modification of the
underlying causal model, together with the probability distribution that the modified
model induces on the variables observed in the experiment.

8 The causal effects P (yx) and P (yx′ ) can be estimated reliably from controlled experimental studies,
and from certain observational (i.e., nonexperimental) studies which permit the control of confounding
through adjustment of covariates [38].
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Definition 11 (Identifiability from experiments). Let Q(M ) be any quantity defined
on a causal model M , let M exp be a modification of M induced by some experiment,
exp, and let Y be a set of variables observed under exp. We say that Q is identifiable
from experiment exp in a class M of models iff any two models M1 and M2 from M
that satisfy PM exp

1
(y) = PM exp

2
(y) also satisfy Q(M1) = Q(M2). In other words, Q is

identifiable from exp if it can be determined uniquely from the probability distribution
that the observed variables Y attain under the experimental conditions created by exp.

In the sequel, we will consider standard controlled experiments, in which the
values of the control variable X are assigned at random. The outcomes of such exper-
iments are the causal effects probabilities, P (yx) and P (yx′), which are also induced
by the submodels Mx and Mx′ , respectively. However, definition 11 is applicable
to a much broader class of experimental designs, corresponding to both deletion and
replacement of the model equations. Note that standard identifiability (definition 10)
is a special case of identifiability from experiments, where Y = V and M exp = M .

4. Bounds and conditions of identification

In this section we estimate the three probabilities of causation defined in sec-
tion 3 when given experimental or nonexperimental data (or both) and additional
assumptions about the data-generating process. We will assume that experimental data
will be summarized in the form of the causal effects P (yx) and P (yx′), and non-
experimental data will be summarized in the form of the joint probability function:
PXY = {P (x, y),P (x′, y),P (x, y′),P (x′, y′)}.9

4.1. Linear programming formulation

In principle, in order to compute the probability of any counterfactual sentence
involving variables X and Y we need to specify a causal model, namely, the functional
relation between X and Y and the probability distribution on U . However, since every
such model induces a joint probability distribution on the four binary variables: X,
Y , Yx and Yx′ , specifying the sixteen parameters of this distribution would suffice.
Moreover, since Y is a deterministic function of the other three variables, the problem
is fully specified by the following set of eight parameters:

p111 =P
(
yx, yx′ ,x

)
= P

(
x, y, yx′

)
,

p110 =P
(
yx, yx′ ,x

′) = P
(
x′, y, yx

)
,

p101 =P
(
yx, y′x′ ,x

)
= P

(
x, y, y′x′

)
,

9 For example, if x represents a specific exposure and y represents the outcome of a specific individual
I , then PXY is estimated from sampled frequency counts in a population that is deemed representative
of the relevant characteristics of I . The choice of an appropriate reference population is usually based
on causal consideration (often suppressed), and involves matching the characteristics of I against the
causal model (M , P (u)) judged to govern the population.
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p100 =P
(
yx, y′x′,x

′) = P
(
x′, y′, yx

)
,

p011 =P
(
y′x, yx′,x

)
= P

(
x, y′, yx′

)
,

p010 =P
(
y′x, yx′,x

′) = P
(
x′, y, y′x

)
,

p001 =P
(
y′x, y′x′,x

)
= P

(
x, y′, y′x′

)
,

p000 =P
(
y′x, y′x′,x

′) = P
(
x′, y′, y′x

)
,

where we have used the consistency condition (14). These parameters are constrained
by the probabilistic constraints

1∑
i=0

1∑
j=0

1∑
k=0

pijk = 1,

(15)
pijk > 0 for i, j, k ∈ {0, 1}.

In addition, the nonexperimental probabilities PXY impose the constraints

p111 + p101 =P (x, y),

p011 + p001 =P
(
x, y′

)
, (16)

p110 + p010 =P
(
x′, y

)
and the causal effects, P (yx) and P (yx′), impose the constraints:

P (yx) = p111 + p110 + p101 + p100,
(17)

P (yx′) = p111 + p110 + p011 + p010.

The quantities we wish to bound are:

PNS = p101 + p100, (18)

PN =
p101

P (x, y)
, (19)

PS =
p100

P (x′, y′)
. (20)

In the following sections we obtain bounds for these quantities by solving various
linear programming problems. For example, given both experimental and nonexper-
imental data, the lower (and upper) bounds for PNS are obtained by minimizing (or
maximizing, respectively) p101 + p100 subject to the constraints (15)–(17). The bounds
obtained are guaranteed to be sharp because the optimization is global.

Optimizing the functions in (18)–(20), subject to equality constraints, defines
a linear programming (LP) problem that lends itself to closed-form solution. Balke
[3, appendix B] describes a computer program that takes symbolic descriptions of
LP problems and returns symbolic expressions for the desired bounds. The program
works by systematically enumerating the vertices of the constraint polygon of the dual
problem. The bounds reported in this paper were produced (or tested) using Balke’s
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program, and will be stated here without proofs; their correctness can be verified by
manually enumerating the vertices as described in [3, appendix B].

4.2. Bounds with no assumptions

4.2.1. Given nonexperimental data
Given PXY , constraints (15) and (16) induce the following upper bound on PNS:

0 6 PNS 6 P (x, y) + P
(
x′, y′

)
. (21)

However, PN and PS are not constrained by PXY .
These constraints also induce bounds on the causal effects P (yx) and P (yx′):

P (x, y)6P (yx) 6 1− P
(
x, y′

)
,

(22)
P (x′, y)6P (yx′) 6 1− P

(
x′, y′

)
.

4.2.2. Given causal effects
Given constraints (15) and (17), the bounds induced on PNS are:

max
[
0,P (yx)− P (yx′)

]
6 PNS 6 min

[
P (yx),P

(
y′x′
)]

(23)

with no constraints on PN and PS.

4.2.3. Given both nonexperimental data and causal effects
Given the constraints (15)–(17), the following bounds are induced on the three

probabilities of causation:

max


0

P (yx)− P (yx′)

P (y)− P (yx′)

P (yx)− P (y)

6 PNS 6 min


P (yx)

P
(
y′x′
)

P (x, y) + P
(
x′, y′

)
P (yx)− P (yx′) + P

(
x, y′

)
+ P

(
x′, y

)

 ,

(24)

max


0

P (y)− P (yx′)
P (x, y)

6 PN 6 min


1

P (y′x′)− P (x′, y′)
P (x, y)

 , (25)

max


0

P (yx)− P (y)
P (x′, y′)

6 PS 6 min


1

P (yx)− P (x, y)
P (x′, y′)

 . (26)

Thus we see that some information about PN and PS can be extracted without making
any assumptions about the data-generating process. Furthermore, combined data from
both experimental and nonexperimental studies yield information that neither study
alone can provide.
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4.3. Bounds under exogeneity (no confounding)

Definition 12 (Exogeneity). A variable X is said to be exogenous for Y in model M
iff

P (yx) = P (y | x) and P (yx′) = P
(
y | x′

)
, (27)

or, equivalently,

Yx⊥⊥X and Yx′ ⊥⊥X. (28)

In words, the way Y would potentially respond to experimental conditions x or x′ is
independent of the actual value of X.

Equation (27) has been given a variety of (equivalent) definitions and interpre-
tations. Epidemiologists refer to this condition as “no-confounding” [44], statisticians
call it “as if randomized”, and Rosenbaum and Rubin [45] call it “weak ignorability”.
A graphical criterion ensuring exogeneity is the absence of a common ancestor of X
and Y in G(M ) (more precisely, a common ancestor that is connected to Y through a
path not containing X, including latent ancestors, which represent dependencies among
variables in U ). The classical econometric criterion for exogeneity (e.g., [11, p. 169])
states that X be independent of the error term (u) in the equation for Y .10 We will
use the term “exogeneity”, since it was under this term that the relations given in (27)
first received their precise definition (by economists).

Combining equation (27) with the constraints of (15)–(17), the linear program-
ming optimization (section 4.1) yields the following results:

Theorem 1. Under condition of exogeneity, the three probabilities of causation are
bounded as follows:

max
[
0,P (y | x)− P

(
y | x′

)]
6 PNS 6 min

[
P (y | x),P

(
y′ | x′

)]
, (29)

max[0,P (y | x)− P (y | x′)]
P (y | x)

6 PN 6 min[P (y | x),P (y′ | x′)]
P (y | x)

, (30)

max[0,P (y | x)− P (y | x′)]
P (y′ | x′) 6 PS 6 min[P (y | x),P (y′ | x′)]

P (y′ | x′) . (31)

The bounds expressed in equation (30) were first derived by Robins and Green-
land [44]; a more elaborate proof can be found in [15]. Pearl [39] derived equa-
tions (29)–(31) under a stronger condition of exogeneity (see definition 13). We see
that under the condition of no-confounding the lower bound for PN can be expressed
as

PN > 1− 1
P (y | x)/P (y | x′) , 1− 1

RR
, (32)

10 This criterion has been the subject of relentless objections by modern econometricians [12,25,27], but
see [1;40, pp. 169–170; 245–247] for a reconciliatory perspective on this controversy.
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where RR = P (y | x)/P (y | x′) is the risk ratio (also called relative risk) in epi-
demiology. Courts have often used the condition RR > 2 as a criterion for legal
responsibility [2]. Equation (32) shows that this practice represents a conservative
interpretation of the “more probable than not” standard (assuming no confounding);
PN must indeed be higher than 0.5 if RR exceeds 2. Freedman and Stark [15] argue
that, in general, epidemiological evidence may not be applicable as proof for specific
causation [15] because such evidence cannot account for all characteristics specific to
the plaintiff. Freedman and Stark further imply that the appropriate way of interpreting
the “more probable than not” criterion would be to consider the probability of causa-
tion in a restricted subpopulation, one that shares the plaintiff characteristics. Taken
to extreme, such restrictive interpretation would insist on characterizing the plaintiff
to minute detail, and would reduce PN to zero or one when all relevant details are
accounted for. We doubt that this interpretation underlies the intent of judicial stan-
dards. We believe that, by using the wording “more probable than not”, law makers
have instructed us to ignore specific features for which data is not available, and to
base our determination on the most specific features for which reliable data is avail-
able (see footnote 9).11 PN ensures us that two obvious features of the plaintiff will
not be ignored: the exposure, x, and the injury, y. In contrast, these two features are
ignored in the causal effect measure P (yx) which is a quantity averaged over the entire
population, including unexposed and uninjured.

4.3.1. Bounds under strong exogeneity
The condition of exogeneity, as defined in equation (27) is testable by comparing

experimental and nonexperimental data. A stronger version of exogeneity can be
defined as the joint independence {Yx,Yx′}⊥⊥X which was called “strong ignorability”
by Rosenbaum and Rubin [45]. Though untestable, such joint independence is assumed
to hold when we assert the absence of factors that simultaneously affect exposure and
outcome.

Definition 13 (Strong Exogeneity). A variable X is said to be strongly exogenous for
Y in model M iff {Yx,Yx′}⊥⊥X, that is,

P
(
yx, yx′ | x

)
=P (yx, yx′),

P
(
yx, y′x′ | x

)
=P

(
yx, y′x′

)
,

(33)
P
(
y′x, yx′ | x

)
=P

(
y′x, yx′

)
,

P
(
y′x, y′x′ | x

)
=P

(
y′x, y′x′

)
.

The four conditions in (33) are sufficient to represent {Yx,Yx′}⊥⊥X, because for every
event E we have

P (E | x) = P (E) =⇒ P
(
E | x′

)
= P (E). (34)

11 Our results remain valid when we condition PXY on a set of covariates that characterize the specific
case at hand.
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Remarkably, the added constraints introduced by strong exogeneity do not alter
the bounds of equations (29)–(31). They do, however, strengthen lemma 1:

Theorem 2. If strong exogeneity holds, the probabilities PN, PS, and PNS are con-
strained by the bounds of equations (29)–(31), and, moreover, PN, PS, and PNS are
related to each other as follows [39]:

PN =
PNS

P (y | x)
, (35)

PS =
PNS

P (y′ | x′) . (36)

4.4. Identifiability under monotonicity

Definition 14 (Monotonicity). A variable Y is said to be monotonic relative to vari-
able X in a causal model M iff

y′x ∧ yx′ = false. (37)

Monotonicity expresses the assumption that a change from X = false to X = true
cannot, under any circumstance make Y change from true to false. In epidemiology,
this assumption is often expressed as “no prevention”, that is, no individual in the
population can be helped by exposure to the risk factor. Balke and Pearl [6] used
this assumption to tighten bounds of treatment effects from studies involving non-
compliance. Glymour [19] and Cheng [8] resort to this assumption in using disjunctive
or conjunctive relationships between causes and effects, excluding functions such as
exclusive-or, or parity.

In the linear programming formulation of section 4.1, monotonicity narrows the
feasible space to the manifold:

p011 = 0,
(38)

p010 = 0.

4.4.1. Given nonexperimental data
Under the constraints (15), (16), and (38), we find the same bounds for PNS as

the ones obtained under no assumptions (equation (21)). Moreover, there are still no
constraints on PN and PS. Thus, with nonexperimental data alone, the monotonicity
assumption does not provide new information.

However, the monotonicity assumption induces sharper bounds on the causal
effects P (yx) and P (yx′):

P (y)6P (yx) 6 1− P
(
x, y′

)
,

(39)
P
(
x′, y

)
6P (yx′) 6 P (y).
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Compared with equation (22), the lower bound for P (yx) and the upper bound for
P (yx′) are tightened. The importance of equation (39) lies in providing a simple neces-
sary test for the assumption of monotonicity. These inequalities are sharp, in the sense
that every combination of experimental and non-experimental data that satisfy these
inequalities can be generated from some causal model in which Y is monotonic in X.

That the commonly made assumption of “no-prevention” is not entirely exempt
from empirical scrutiny should come as a relief to many epidemiologists. Alterna-
tively, if the no-prevention assumption is theoretically unassailable, the inequalities of
equation (39) can be used for testing the compatibility of the experimental and non-
experimental data, namely, whether subjects used in clinical trials were sampled from
the same target population, characterized by the joint distribution PXY .

4.4.2. Given causal effects
Constraints (15), (17), and (38) induce no constraints on PN and PS, while the

value of PNS is fully determined:

PNS = P
(
yx, y′x′

)
= P (yx)− P (yx′).

That is, under the assumption of monotonicity, PNS can be determined by experimental
data alone, despite the fact that the joint event yx ∧ y′x′ can never be observed.

4.4.3. Given both nonexperimental data and causal effects
Under the constraints (15)–(17) and (38), the values of PN, PS, and PNS are all

determined precisely.

Theorem 3. If Y is monotonic relative to X, then PNS, PN, and PS are given by

PNS =P
(
yx, y′x′

)
= P (yx)− P (yx′), (40)

PN =P
(
y′x′ | x, y

)
=
P (y)− P (yx′)

P (x, y)
, (41)

PS =P
(
yx | x′, y′

)
=
P (yx)− P (y)
P (x′, y′)

. (42)

Corollary 1. If Y is monotonic relative to X, then PNS, PN, and PS are identifiable
whenever the causal effects P (yx) and P (yx′) are identifiable,

Equations (40)–(42) are applicable to situations where, in addition to observa-
tional probabilities, we also have information about the causal effects P (yx) and P (yx′).
Such information may be obtained either directly, through separate experimental stud-
ies, or indirectly, from observational studies in which certain identifying assumptions
are deemed plausible (e.g., assumptions that permits identification through adjustment
of covariates). Note that the identification of PN requires only P (yx′) while that of PS
requires P (yx). In practice, however, any method that yields the former also yields
the latter.
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One common class of models which permits the identification of P (yx) is called
Markovian.

Definition 15 (Markovian models). A causal model M is said to be Markovian if the
graph G(M ) associated with M is acyclic, and if the exogenous factors ui are mutually
independent. A model is semi-Markovian iff G(M ) is acyclic and the exogenous
variables are not necessarily independent. A causal model is said to be positive-
Markovian if it is Markovian and P (v) > 0 for every v.

It is shown in [36,38] that for every two variables, X and Y , in a positive-
Markovian model M , the causal effects P (yx) and P (yx′) are identifiable and are
given by

P (yx) =
∑
paX

P (y | paX ,x)P (paX),

(43)
P (yx′) =

∑
paX

P
(
y | paX ,x′

)
P (paX ),

where paX are (values of) the parents of X in the causal graph associate with M (see
also [40, p. 73;42,51]. Thus, we can combine equation (43) with theorem 3 and obtain
a concrete condition for the identification of the probability of causation.

Corollary 2. If in a positive-Markovian model M , the function Yx(u) is monotonic,
then the probabilities of causation PNS, PS and PN are identifiable and are given by
equations (40)–(42), with P (yx) given in equation (43). If monotonicity cannot be
ascertained, then PNS, PN and PS are bounded by equations (24)–(26), with P (yx)
given in equation (43).

A broader identification condition can be obtained through the use of the back-
door and front-door criteria [38], which are applicable to semi-Markovian models.
These were further generalized in [16]12 and lead to the following corollary:

Corollary 3. LetGP be the class of semi-Markovian models that satisfy the graphical
criterion of Galles and Pearl [16]. If Yx(u) is monotonic, then the probabilities of
causation PNS, PS and PN are identifiable in GP and are given by equations (40)–
(42), with P (yx) determined by the topology of G(M ) through the GP criterion.

4.5. Identifiability under monotonicity and exogeneity

Under the assumption of monotonicity, if we further assume exogeneity, then
P (yx) and P (yx′) are identified through equation (27), and from theorem 3 we conclude
that PNS, PN, and PS are all identifiable.

12 Galles and Pearl [16] provide an efficient method of deciding from the graph G(M ) whether P (yx)
is identifiable and, if the answer is affirmative, deriving the expression for P (yx). See also [40,
pp. 114–118].
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Theorem 4 (Identifiability under exogeneity and monotonicity). If X is exogenous
and Y is monotonic relative to X, then the probabilities PN, PS, and PNS are all
identifiable, and are given by

PNS =P (y | x)− P
(
y | x′

)
, (44)

PN =
P (y)− P (y | x′)

P (x, y)
=
P (y | x)− P (y | x′)

P (y | x)
, (45)

PS =
P (y | x)− P (y)

P (x′, y′)
=
P (y | x)− P (y | x′)

P (y′ | x′) . (46)

These expressions are to be recognized as familiar measures of attribution that
often appear in the literature. The r.h.s. of (44) is called “risk-difference” in epidemiol-
ogy, and is also misnamed “attributable risk” [26, p. 87]. The probability of necessity,
PN, is given by the excess-risk-ratio (ERR)

PN =
P (y | x)− P (y | x′)

P (y | x)
= 1− 1

RR
(47)

often misnamed as the attributable fraction [46], attributable-rate percent [26, p. 88],
attributed fraction for the exposed [28, p. 38], or attributable proportion [9]. The
reason we consider these labels to be misnamed is that ERR invokes purely statistical
relationships, hence it cannot in itself serve to measure attribution, unless fortified with
some causal assumptions. Exogeneity and monotonicity are the causal assumptions that
endow ERR with attributional interpretation, and these assumptions are rarely made
explicit in the literature on attribution.

The expression for PS is likewise quite revealing

PS =
P (y | x)− P (y | x′)

1− P (y | x′) , (48)

as it coincides with what epidemiologists call the “relative difference” [47], which is
used to measure the susceptibility of a population to a risk factor x. It also coincides
with what Cheng calls “causal power” [8], namely, the effect of x on y after suppressing
“all other causes of y”. See [39] for additional discussions of these expressions.

To appreciate the difference between equations (41) and (47) we can rewrite
equation (41) as

PN =
P (y | x)P (x) + P (y | x′)P (x′)− P (yx′)

P (y | x)P (x)

=
P (y | x)− P (y | x′)

P (y | x)
+
P (y | x′)− P (yx′)

P (x, y)
. (49)

The first term on the r.h.s. of (49) is the familiar ERR as in (47), and represents the
value of PN under exogeneity. The second term represents the correction needed to
account for X’s non-exogeneity, i.e., P (yx′) 6= P (y | x′). We will call the r.h.s. of (49)
by corrected excess-risk-ratio (CERR).
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From equations (44)–(46) we see that the three notions of causation satisfy the
simple relationships given by equations (35) and (36) which we obtained under the
strong exogeneity condition. In fact, we have the following theorem.

Theorem 5. Monotonicity (37) and exogeneity (27) together imply strong exogene-
ity (33).

Proof. From the monotonicity condition, we have

yx′ = yx′ ∧
(
yx ∨ y′x

)
= (yx′ ∧ yx) ∨

(
yx′ ∨ y′x

)
= yx′ ∧ yx. (50)

Thus we can write

P (yx′) = P (yx, yx′), (51)

and

P
(
y | x′

)
= P

(
yx′ | x′

)
= P

(
yx, yx′ | x′

)
, (52)

where consistency condition (14) is used. The exogeneity condition (27) allows us to
equate (51) and (52), and we obtain

P
(
yx, yx′ | x′

)
= P (yx, yx′), (53)

which implies the first of the four conditions in (33):

P (yx, yx′ | x) = P (yx, yx′). (54)

Combining equation (54) with

P (yx) =P (yx, yx′) + P
(
yx, y′x′

)
, (55)

P (y | x) =P (yx | x) = P (yx, yx′ | x) + P
(
yx, y′x′ | x

)
, (56)

and the exogeneity condition (27), we obtain the second equation in (33):

P
(
yx, y′x′ | x

)
= P

(
yx, y′x′

)
. (57)

Both sides of the third equation in (33) are equal to zero from monotonicity condition
and the last equation in (33) follows because the four quantities sum up to 1 on both
sides of the four equations. �

4.6. Summary of results

We now summarize the results from section 4 that should be of value to practicing
epidemiologists and policy makers. These results are shown in table 1, which lists the
best estimate of PN under various assumptions and various types of data—the stronger
the assumptions, the more informative the estimates.

We see that the excess-risk-ratio (ERR), which epidemiologists commonly iden-
tify with the probability of causation, is a valid measure of PN only when two
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Table 1
PN (the probability of necessary causation) as a function of assumptions and available data. ERR
stands of the excess-risk-ratio 1 − P (y | x′)/P (y | x) and CERR is given in equation (49). The

non-entries (—) represent vacuous bounds, that is, 0 6 PN 6 1.

Assumptions Data available

Exogeneity Monotonicity Experimental Nonexperimental Combined

+ + ERR ERR ERR
+ − bounds bounds bounds
− + — — CERR
− − — — bounds

assumptions can be ascertained: exogeneity (i.e., no confounding) and monotonic-
ity (i.e., no prevention). When monotonicity does not hold, ERR provides merely
a lower bound for PN, as shown in equation (30). (The upper bound is usually
unity.) In the presence of confounding, ERR must be corrected by the additive term
[P (y | x′)−P (yx′)]/P (x, y), as stated in (49). In other words, when confounding bias
(of the causal effect) is positive, PN is higher than ERR by the amount of this additive
term. Clearly, owing to the division by P (x, y), the PN bias can be many times higher
than the causal effect bias P (y | x′)−P (yx′). However, confounding results only from
association between exposure and other factors that affect the outcome; one need not
be concerned with associations between such factors and susceptibility to exposure, as
is often assumed in the literature [19,29].

The last two rows in table 1 correspond to no assumptions about exogeneity,
and they yield vacuous bounds for PN when data come from either experimental
or observational study. In contrast, informative bounds (25) or point estimates (49)
are obtained when data from experimental and observational studies are combined.
Concrete use of such combination will be illustrated in section 5.

5. An example: Legal responsibility from experimental and nonexperimental
data

A lawsuit is filed against the manufacturer of drug x, charging that the drug is
likely to have caused the death of Mr. A, who took the drug to relieve symptom S
associated with disease D.

The manufacturer claims that experimental data on patients with symptom S show
conclusively that drug x may cause only minor increase in death rates. The plaintiff
argues, however, that the experimental study is of little relevance to this case, because
it represents the effect of the drug on all patients, not on patients like Mr. A who
actually died while using drug x. Moreover, argues the plaintiff, Mr. A is unique in
that he used the drug on his own volition, unlike subjects in the experimental study who
took the drug to comply with experimental protocols. To support this argument, the
plaintiff furnishes nonexperimental data indicating that most patients who chose drug x
would have been alive if it were not for the drug. The manufacturer counter-argues by
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Table 2
Frequency data (hypothetical) obtained in experimental and nonexperimental stud-

ies, comparing deaths (in thousands) among drug users, x, and non-users, x′.

Experimental Nonexperimental

x x′ x x′

Deaths (y) 16 14 2 28
Survivals (y′) 984 986 998 972

stating that: (1) counterfactual speculations regarding whether patients would or would
not have died are purely metaphysical and should be avoided, and (2) nonexperimental
data should be dismissed a priori, on the ground that such data may be highly biased;
for example, incurable terminal patients might be more inclined to use drug x if it
provides them greater symptomatic relief. The court must now decide, based on both
the experimental and non-experimental studies, what the probability is that drug x was
in fact the cause of Mr. A’s death.

The (hypothetical) data associated with the two studies are shown in table 2. The
experimental data provide the estimates

P (yx) = 16/1000 = 0.016,

P (yx′) = 14/1000 = 0.014,

P
(
y′x′
)

= 1− P (yx′) = 0.986.

The non-experimental data provide the estimates

P (y) = 30/2000 = 0.015,

P (x, y) = 2/2000 = 0.001,

P
(
x′, y′

)
= 972/2000 = 0.486.

Since both the experimental and nonexperimental data are available, we can obtain
bounds on all three probabilities of causation through equations (24)–(26) without
making any assumptions about the underlying mechanisms. The data in table 2 imply
the following numerical results:

0.0026 PNS 6 0.016, (58)

1.06 PN 6 1.0, (59)

0.0026 PS 6 0.031. (60)

These figures show that although surviving patients who did not take drug x have only
less than 3.1% chance to die had they taken the drug, there is 100% assurance (barring
sample errors) that those who took the drug and died would have survived had they
not taken the drug. Thus the plaintiff was correct; drug x was in fact responsible for
the death of Mr. A.
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If we assume that drug x can only cause, but never prevent, death, theorem 3 is
applicable and equations (40)–(42) yield

PNS = 0.002, (61)

PN = 1.0, (62)

PS = 0.002. (63)

Thus, we conclude that drug x was responsible for the death of Mr. A, with or without
the no-prevention assumption.

Note that a straightforward use of the experimental excess-risk-ratio would yield
a much lower (and incorrect) result:

P (yx)− P (yx′)
P (yx)

=
0.016 − 0.014

0.016
= 0.125. (64)

Evidently, what the experimental study does not reveal is that, given a choice, terminal
patients stay away from drug x. Indeed, if there were any terminal patients who would
choose x (given the choice), then the control group (x′) would have included some such
patients (due to randomization) and so the proportion of deaths among the control group
P (yx′) would have been higher than P (x′, y), the population proportion of terminal
patients avoiding x. However, the equality P (yx′) = P (y,x′) tells us that no such
patients were present in the control group, hence (by randomization) no such patients
exist in the population at large and, therefore, none of the patients who freely chose
drug x was a terminal case; all were susceptible to x.

The numbers in table 2 were obviously contrived to show the usefulness of the
bounds in equations (24)–(26). Nevertheless, it is instructive to note that a combi-
nation of experimental and non-experimental studies may unravel what experimental
studies alone will not reveal. In addition, such combination may provide a test for
the assumption of no-prevention, as outlined in section 4.4.1. For example, if the
frequencies in table 2 were slightly different, they could easily violate the inequal-
ities of equation (39). Such violation may be due either to nonmonotonicity or to
incompatibility of the experimental and nonexperimental groups.

This last point may warrant a word of explanation, lest the reader wonders why
two data sets, taken from two separate groups under different experimental conditions,
should constrain one another. The explanation is that certain quantities in the two sub-
populations are expected to remain invariant to all these differences, provided that the
two subpopulations were sampled properly from the same general population. In fact,
every quantity of the form P (Q), where Q is computable from a causal model M ,
enjoys this invariance property, because the two subpopulations are assumed to be
governed by the same causal model. Thus, the question whether two data sets, ob-
tained under different experimental conditions, should constrain one another reduces
to a purely mathematical question of whether the quantities that represent the two
experimental conditions, P (Q) and P (Q′), necessarily constrain one another in the
same causal model considered. In our case, the quantities in question are simply the
causal effects probabilities, P (yx′) and P (yx). Although these probabilities were not
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measured in the nonexperimental group, they must nevertheless be the same as those
measured in the experimental group. The invariance of these quantities is the basic ax-
iom of controlled experimentation, without which no inference would be possible from
experimental studies to general behavior of the population. This invariance, together
with monotonicity, imply the inequalities of (39).

6. Conclusion

This paper shows how useful information about probabilities of causation can be
obtained from experimental and observational studies, with weak or no assumptions
about the data-generating process. We have shown that, in general, bounds for the
probabilities of causation can be obtained from combined experimental and nonexper-
imental data. These bounds were proven to be sharp and, therefore, they represent the
ultimate information that can be extracted from statistical methods. We have further
illustrated the applicability of these results to problems in epidemiology and legal rea-
soning, and we have clarified the two basic assumptions – exogeneity and monotonicity
– that must be ascertained before statistical measures such as excess-risk-ratio could
represent attributional quantities such as probability of causation.

It is appropriate at this point to discuss the relation between the assumptions in
the example of section 5 (where we have population probabilities and available ex-
periments) and the general framework with which the paper begins (where we have
exogenous variables that determine everything and the probabilities enter as an add-on
feature). Traditional statisticians might judge the deterministic model incompatible
with the stochastic nature of the data, and would be tempted to start the analysis at
section 3 (see [15,44]), without the counterfactual model expounded in section 2. How-
ever, traditional statistical analysis cannot commence without explicating the quantity
we wish to estimate (that is, PN), for which we have no empirical data and for which
we have no statistical definition. Instead, our target quantity is defined verbally by
law makers as a mixture of probabilistic and deterministic components: “it is more
probable than not, that the plaintiff injury would not have occurred but for the defender
action”. The “more probable than not” criterion is probabilistic while the “but for”
criterion is deterministic, implying counterfactual necessity.

The structural approach expounded in this paper gives a clear semantics to this
mixture, typical of counterfactual expressions, and relates it in a natural way to empir-
ical data. The stochastic nature of the data is viewed as emerging from our ignorance
of the detailed experimental conditions that prevailed in the study. The exogenous
variables in U represent these missing details, and include the physiology and previ-
ous history of each person, his/her mental and spiritual attitude, as well as the time and
manner in which the exposure occurred. In short, U summarizes all the factors which
“determine” in the classical physical sense the outcome of the study. P (u) summarizes
our ignorance of those factors.

The main application of our analysis to artificial intelligence lies in the automatic
generation of causal explanations, where the distinction between necessary and suf-
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ficient causes has important ramifications. As can be seen from the definitions and
examples discussed in this paper, necessary causation is a concept tailored to a specific
event under consideration (singular causation), whereas sufficient causation is based
on the general tendency of certain event types to produce other event types. Adequate
explanations should respect both aspects. If we base explanations solely on generic
tendencies (i.e., sufficient causation) then we lose important scenario-specific informa-
tion. For instance, aiming a gun at and shooting a person from 1,000 meters away will
not qualify as an explanation for that person’s death, owing to the very low tendency of
shots fired from such long distances to hit their marks. This stands contrary to common
sense, for when the shot does hit its mark on that singular day, regardless of the reason,
the shooter is an obvious culprit for the consequence. If, on the other hand, we base
explanations solely on singular-event considerations (i.e., necessary causation), then
ambient factors that are normally present in the world would awkwardly qualify as ex-
planations. For example, the presence of oxygen in the room would qualify as an expla-
nation for the fire that broke out, simply because the fire would not have occurred were
it not for the oxygen. That we judge the match struck, not the oxygen, to be the more
adequate explanation of the fire indicates that we go beyond necessity considerations.

Recasting the question in the language of PN and PS, we note that, since both
explanations are necessary for the fire, each will command a PN of unity. (In fact,
the PN is actually higher for the oxygen if we allow for alternative ways of igniting a
spark). Thus, it must be the sufficiency component that endows the match with greater
explanatory power than the oxygen. If the probabilities associated with striking a match
and the presence of oxygen are denoted pm and po, respectively, then the PS measures
associated with these explanations evaluate to PS(match) = po and PS(oxygen) = pm,
clearly favoring the match when po � pm. Thus, a robot instructed to explain why a
fire broke out has no choice but to consider both PN and PS in its deliberations.

Clearly, some balance must be made between the necessary and the sufficient
components of causal explanation, and the present paper illuminates this balance by
formally explicating the basic relationships between the two components. In [40,
chapter 10] it is further shown that PN and PS are too crude for capturing probabilities
of causation in multi-stage scenarios, and that the structure of the intermediate process
leading from cause to effect must enter the definitions of causation and explanation.
Such considerations will be the subject of future investigation (see [24]).

Another important application of probabilities of causation is found in decision
making problems, such as those encountered in medicine, system maintenance, and
planning under uncertainty. As was pointed out in [40, pp. 217–219], the counterfactual
“y would have been true if x were true” can often be translated into a conditional
action claim “given that currently x and y are false, y will be true if we do x”. The
evaluation of such conditional predictions, and the probabilities of such predictions, are
commonplace in decision making situations, where actions are brought into focus by
certain eventualities that demand remedial correction. In troubleshooting, for example,
we observe undesirable effects Y = y that are potentially caused by other conditions
X = x and we wish to predict whether an action that brings about a change in X would
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remedy the situation. The information provided by the evidence y and x is extremely
valuable, and it must be processed (using the updated distribution P (u | x, y), as in
equation (9)) before we can predict the effect of any action.13 Thus, the expressions
developed in this paper constitute bounds on the effectiveness of pending policies,
when full knowledge of the current state of affairs (u) is not available, yet the current
states of the decision variable (X) and the outcome variable (Y ) are measured.

For these bounds to be valid in policy making, the context u must be time-
invariant, that is, the probability P (u) should represent epistemic uncertainty about a
static, albeit unknown context U = u. The constancy of u is well justified in the control
and diagnosis of physical systems, where u represents fixed, but unknown physical
characteristic of devices or subsystems. The constancy approximation is also justified
in the health sciences where patients’ genetic attributes and physical characteristics can
be assumed relatively constant between observation and treatment. For instance, if a
patient in the example of section 5 wishes to assess the risk of switching from x′ (no
drug) to x (drug), it is reasonable to assume that this patient’s susceptibility to the drug
remains constant through the period of decision. The risk of death associated with this
patient’s decision to start using the drug will then be given by PS = P (yx | x′, y′), and
may be assessed by the bounds in equation (60).

The constancy assumption is less justified in economic systems, where agents are
bombarded by rapidly fluctuating stream of external forces (“shocks” in econometric
terminology) as well as by inter-agents communication messages. These exogenous
factors may vary substantially during the policy making interval and they require, there-
fore, time-dependent analysis. The canonical violation of the constancy assumption
occurs, of course, in quantum mechanical systems, where the indeterminism associ-
ated with U is “intrinsic”, and the existence of a deterministic relationship between U
and V is no longer a good approximation. A method of incorporating such intrinsic
indeterminism into counterfactual analysis is outlined in [40, p. 220], and leads to
equation (9), where P (Yx′(u) = y′) represents the intrinsic uncertainty in Y associated
with the macroscopic state U = u, under the action do(X = x) (see footnote 6).
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