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Abstract

We demonstrate how counterfactuals can be used to compute the probability that one event
was/is a sufficient cause of another, and how counterfactuals emerge organically from basic
scientific knowledge, rather than manipulative experiments. We contrast this demonstration
with the potential outcome framework and address the distinction between causes and enablers.
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1 Introduction

This note illustrates the use of structural models in counterfactual reasoning. In particular, it
demonstrates the computation of a quantity denoted PS — the probability of sufficiency, which
plays an important role in commonsense reasoning, as well as in legal and medical applications
(Tian and Pearl, 2002; Pearl, 2000; Robins and Greenland, 1989; Pearl, 2015).

To motivate the analysis, we will use the classical example of Oxygen, Matches, and Fire
which The Book of Why (Pearl and Mackenzie, 2018, p. 289) describes as follows:

“A fire broke out after someone struck a match, and the question is “What caused the
fire, striking the match or the presence of oxygen in the room?’ Note that both factors
are equally necessary, since the fire would not have occurred absent one of them. So,
from a purely logical point of view, the two factors are equally responsible for the fire.
Why, then, do we consider lighting the match a more reasonable explanation of the
fire than the presence of oxygen?”

The intuitive explanation invokes the notion of prevalence, or anticipation:

“The person who lit the match ought to have anticipated the presence of oxygen,
whereas nobody is generally expected to pump all the oxygen out of the house in
anticipation of a match-striking ceremony.”



This intuition can also be captured by the notion of sufficiency; striking a match is more likely
to be sufficient for the fire than the presence of oxygen. The language of counterfactuals permits
us to make this distinction precise as follows: For any two variables, X and Y, define a quantity
PS as “the probability that event X = 1 would be sufficient to producing outcome Y = 1.” Using
parenthetical counterfactual notation Y (X = 1) to denote “the value that ¥ would attain had X
been 1,” PS can be written as (Pearl, 2000, Definition 9.2.1):

PS=PlY(X=1)=1]X=0,Y =0]. (1)

In words, PS asks us to imagine a situation where X = 0 and Y = 0 and to test how likely it is
for Y to turn into Y = 1 if X were to change (counterfactually) from X =0to X = 1. Eq. (1)
thus quantifies the capacity of X to produce an outcome Y = 1 in situations where the outcome is
absent. The reason that we must quantify this hypothetical event with probabilities is that both X
and Y are random variables, subjected to the whims of unknown factors, some creating situations
in which X produces Y, and some creating other situations where X does not produces Y. Eq. (1)
quantifies production over all situations, weighted by their likelihood.

We will now compute PS for each of Oxygen and Match and compare their magnitudes. We
start by specifying a structural causal model (SCM) for the variables

F = Fire, M = Match, OX = Oxygen

assuming that F' responds to M and OX through the logical ‘AND’ function

B lifOX=1land M =1 2
) 0 otherwise

Additionally, we assume that, prior to observing the fire, the probabilities for M and OX were:
P(OXZI):pox P(le):pm 3)

with p,x > pm, since match-lighting is a rare event and the presence of oxygen is common.

We are now set to derive the probability of sufficiency (Eq. (1)) for both Oxygen and Match
using a three-step procedure developed in (Pearl, 2000, p. 206). But before presenting this
derivation, it is important that we step back and understand the significance of this exercise. Note
that we are about to derive a counterfactual expression, Eq. (1), from a model that is totally void
of such expressions. Instead, the model depicts the science behind the fire story in the form of
a Boolean function, Eq. (2), and two probabilities, Eq. (3), that can be estimated from the data.
This stands in sharp contrast to conventional methods of estimating counterfactual quantities in
the potential outcome framework which, invariably, start with counterfactual assumptions justified
by drawing analogies to treatments assignments, or “well-defined” manipulations in controlled
randomized experiments (Rubin, 1974; Robins, 1986; Angrist and Pischke, 2014; Imbens and
Rubin, 2015; Morgan and Winship, 2015; Hernan and Robins, 2019).

There is nothing resembling treatments or experimental manipulation in the function of
Eq. (2). One can, of course envision a variety of experiments on the process described in Eq. (2)
but those would be conducted to interrogate the process, not to define it. The process itself is
specified independently of any envisioned manipulations. See (Pearl and Mackenzie, 2018, pp.
144—-150) for discussion of how experiments interrogate Nature, rather than define it.
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This difference between causal models and manipulation-based models is essential for
understanding the significance of the exercise described in this note. We will assess counterfactual
quantities (Eq. (1)) directly from Nature (Eq. (2)) without asking an investigator to translate
Nature into a set of counterfactual statements, prior to commencing the analysis. This we now
demonstrate using the three-step procedure derived in (Pearl, 2000, p. 206). 1. Abduction,

2. Action, and 3. Prediction.

Metaphorically, these steps call for: 1. Updating history in light of the available evidence, 2.
Bending the course of history (minimally) to comply with the antecedent, and 3. Predicting the
outcome based on the updated past and modified model.

2 Formal Derivation
Problem: Compute PS(M) and PS(OX), where (from 1):
PS(OX) = P[F(OX = 1) = 1|0X = 0,F = 0]

PS(M)=P[FM=1)=1M=0,F =0
Assumptions:
P(OX =1)=pox, PM=1)=py,

The model is given by the graph G below, where U; and U, represent unobserved factors which
affect OX and M, respectively. For simplicity, we will assume these factors to be independent, as
shown in Fig. 1.

Figure 1: A graph G representing the structural model of Eq. (2) driven by two unobserved factors,
U 1 and U2.

We shall now derive PS(OX) and PS(M) by applying the three-step algorithm to the model of
Fig. 1.

1. Abduction: We need to update the prior probabilities p,, and p,, in light of the evidence
F = 0. This amounts to computing p/, . and p), for model G, in which F is known to be False
(F = 0) (the situation prior to observing fire, as in Fig. 2.



e

Figure 2: A graph G’ representing the model of Eq. (2) in the absence of fire.

Derivation:
P, =P(OX =1|F =0)=P(0X = 1,F =0)/P(F =0) =
=P(OX=1,M=0)/1-P(OX=1,M=1)
= Pox(1 = pm)/(1 = PoxPm)

b =P(M=1|F=0)=P(M=1,F =0)/P(F = 0) =
=P(M=1,0X=0)/1-P(OX =1,M =1)
:pm(l _pox)/(l _poxpm)

For p,, < 1 and p,, ~ 1 we obtain:
Pox X Pox and  p, & py, (4)

The reason is clear; the updated priors are simply the old priors re-normalized, after exclud-
ing the event F' = 1, which is very rare. An identical result holds therefore when U; and U,
are dependent (see Appendix I).

. Action: To compute PS(M), we take the updated model of Fig. 2 and simulate the action
do(M = 1). This results in the graph Gy, of Fig. 3:

Similarly, to compute PS(OX ), we simulate the action do(OX = 1), leading to graph Gox—1,
of Fig. 4.

. Prediction: To complete the derivation of PS(M), we now compute P(F = 1) in Gy—1,
yielding:

PS(M) =P(F=1)in Gy_,
= Plox

=~ Dox

Likewise, to compute PS(OX), we compute P(F = 1) in Gox—; giving:

PS(0X) =P(F=1)in Gox_,
= Pl

~ DPm
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Figure 3: A graph Gy, representing the simulated action do(M = 1) on the updated model of
Fig. 2, yielding P(F = 1) = pl..
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Figure 4: A graph Gpx—; representing the simulated action do(OX = 1) on the updated model of
Fig. 2, yielding P(F = 1) = p/,,.

Thus, we have
PS(M) = pox and PS(OX) = pp, )

and PS(M) > PS(OX) as expected.

3 Conclusions and Related Works

The primary purposes of this note have been: (1) To demonstrate that counterfactuals are
derivable algorithmically from common scientific knowledge, and are not needed as inputs for
causal analysis. (2) To empower researchers with methods of estimating counterfactuals directly
from functional description of their problems. We have demonstrated these two capabilities by
computing PS, the probability of sufficiency, in the context of the classical Oxygen-Match-Fire
example, which is pivotal for understanding causal explanations. Using this computation we
obtained a formal confirmation of the intuition that lighting the match is the more plausible cause
of the fire, not the presence of oxygen.

A brief historical overview of this problem and previous works towards its solution should
help the reader appreciate its context and importance.



The most common conception of causation — that the effect £ would not have occurred in
the absence of the cause C — goes back to Hume (1748), and captures the notion of “necessary
causation.” The probabilistic version of necessary causation (PN) is behind many judicial
standards. In tort law, for example, damage should be paid if and only if it is more probable than
not that damage would not have occurred but for the defendant action.

But causation has two faces, necessary and sufficient. The distinction between the two was first
articulated by John Stuart Mill (1843), and has received semi-formal explications in the 1960s,
first using conditional probabilities (Good, 1961) and then using logical implications (Mackie,
1965). Both explications suffer from basic semantical difficulties, since probabilities and classical
logic are too crude to capture the logic of counterfactual conditionals (Kim, 1971; Pearl, 2000,
pp- 249-256, 313-316). The popular “Sufficient Component” model of Kenneth Rothman (1976)
is essentially equivalent to Mackie’s “INUS condition” and inherits the semantical difficulties
noted in (Kim, 1971). Nevertheless, the graphical schematics of Rothman’s “causal pies” were
found very effective in teaching epidemiologists how to represent interacting causes as Boolean
functions in disjunctive form. Additionally, counterfactual interpretations of Rothman’s model
(VanderWeele and Hernén (2006) have resolved some of its semantical difficulties. In particular,
these interpretations restrict variables from entering the sufficient cause model unless they are
parents of the outcome variable in the causal diagram, as depicted in Fig. 1.

Robins and Greenland (1989) gave a counterfactual definition for the probability of necessary
causation taking counterfactuals as primitives, and assuming that one is in possession of a joint
probability function over counterfactual events. Pearl (1999) gave definitions for the probabilities
of necessary or sufficient causation (or both) based on structural model semantics which, as we
have seen in this note leads to effective procedures for computing counterfactuals from a given
causal theory (Balke and Pearl, 1994, 1995). Additionally, this semantics can be characterized by
a complete set of axioms Galles and Pearl (1998); Halpern (1998), which can be used as inference
rules in the analysis.

Pearl (1999) and Tian and Pearl (2000) have derived tight bounds on PS and PN when both
observational and experimental data are available. A tool kit for solving counterfactual parameters
is given in Pearl et al. (2016, pp. 116-126).

Our derivation of PS also bears on a recent debate concerning the role of non-manipulable
variables in causal inference, specifically, whether variables such as sex or race can be considered
“causes” (Herndn and Taubman, 2008; Pearl, 2018). In our example, oxygen is practically
non-manipulable, and yet, the structural model of Fig. 1 treats oxygen and match on equal footing,
with oxygen serving as an enabler of fire (see Appendix II). The model further allows for the
estimation of the counterfactuals PS(OX ) and PS(M) by the same three-step procedure, regardless
of how manipulable they are. Such counterfactuals are considered “not well-defined” in the
orthodox school of potential outcome, an untenable stance that would prohibit our question “what
caused the fire” from being asked, let alone being answered.
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Appendix I: The Importance of the Abductive Step, From
Interventions to Counterfactuals

The infinitesimal probability of no oxygen, (1 — p,x) < 1, led to the approximate equalities
P ™ Pox and  pl, & py
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which may give readers the impression that the abduction step is superfluous, and that we
could have gotten Eq. (5) directly, by computing the causal effects P[Y(OX = 1) = 1] and
P]Y(M = 1) = 1] instead of Eq. (1). Indeed, intervening to secure oxygen in the house will have
very low probability p,, of resulting in fire, and intervening to light a match will result in fire with
high probability, p,,. To appreciate the importance of the abduction step: let us compute PS for a
hypothetical scenario in which p,, and p,, are determined by two independent fair coins, resulting
in pox =pm=1/2.

The causal effects in this case would compute to

PY(OX=1)=1]=PyM=1)=1]=1/2 (6)

because once we assure the presence of oxygen fire will occur 50% of the time, when a match
is struck. Conversely, once a match is struck, fire will occur 50% of the time, when oxygen is
present.

However, the probability of actually producing fire in situation where fire is initially absent is
in fact lower than 1/2. Going through the abduction exercise, we get

P=PM=1F =0)=PUy=1{Uy=0 or Uy =0)=1/3
p=POX=1F=0)=PU; =1|{U,=0 or U =0)=1/3

and, accordingly, the probabilities of sufficiency become:
PS(M)=PS(0X)=1/3

lower than the causal effects in (6).

Much wider difference between p,, and p), will obtain if we let U; affect U, in a significant
way. For example, let U; be a fair coin and let U; track U;. The marginal probabilities of OX
and M will remain the same, p,, = pox = 1/2. and the causal effects, likewise, will be the same
as in Eq. (6). However, the posterior probabilities will be vastly different, yielding p}, = p., . =0,
because both M = 1 and OX = 1 must be false in any situation where F' = 0. Accordingly, the
probabilities of sufficiency must both vanish

PS(M) = PS(OX) =0

as we can see from Figs. 3 and 4, using p}, = p.,. = 0. Indeed, prior to the fire, either U; or U,
must be absent, but since they track each other, both must be absent, so lighting a match will not
trigger a fire.

What we see in this example is a profound difference between the information we obtain from
interventional studies and that obtained from counterfactual analysis. Interventional studies tell us
that striking a match raises the probability of fire from zero to 50, while counterfactual analysis
tells us that, knowing that currently the fire is off, had we struck a match it could not possibly
have triggered a fire. Symmetrically, the same holds for the hypothetical action: “Had we secured
the presence of oxygen.” This retrospective information cannot be obtained from interventional
studies however elaborate.

The extra information that enables us to compute PS requires the specification of the functional
relationships between the variables involved (as in Eq. (2)) as well as the distribution of the



unobserved error terms Uy and U,. These two specifications elevates SCM to the top level (rung 3)
of the Ladder of Causation (Pearl and Mackenzie, 2018) which supports counterfactuals. Lacking
any of these two, as in the potential outcomes framework, or in Causal Bayesian Networks (Pearl,
2000, Sec. 1.3.1.) may allow us to evaluate causal effects, but not counterfactuals. Using Causal
Bayesian Networks, for example, one can estimate the effects of all possible actions, including
compound actions and action conditioned on observed covariates and, yet, none can capture the
retrospective aspect of counterfactuals and infer "What if we had done things differently?”

This theoretical separation between interventions and counterfactuals has not been accepted
by all analysts. It is absent for example from the taxonomy used in Hernan and Robins (2019),
from the potential outcome framework (Imbens and Rubin, 2015), as well as from most work on
Reinforcement Learning (RL) (Kaelbling et al., 1996).

The temptation in RL is to argue: If we can conclude (from interventional studies) that action
A1 tends to bring about a reward R and action A, tends to inhibit that reward, why can’t we assert
counterfactually, after acting A, and failing to achieve R, that “had we acted A; we would have
gotten R?” This line of reasoning may work in the deterministic case, that is, when the reward R
is a deterministic function of the actions A; and A;, but not when it is averaged over a population
or over unmeasured factors.

For an extreme yet simple example that proves the fallacy of drawing counterfactuals from
interventional studies consider a guessing game where a player wins a dollar upon guessing the
outcome of a fair coin and losing a dollar otherwise. The action “guess head” clearly has no effect
on the expected outcome, neither has the action “guess tail.” Both result in a 50% chance of
winning. Yet upon winning a dollar a player can safely assert: “Had I acted differently I would
have lost” (Pearl, 2000, p. 295; Pearl, 2013). The extents to which experimental and observational
studies can inform counterfactual probabilities are delineated in Tian and Pearl (2000) and Pearl
(2000, p. 294).

Appendix II: Causes vs. Enablers

Epidemiologists reading this article will note that the analysis of PS may confer causal power
onto variables that are merely “effect modifiers” but not genuine “causes.” Indeed, in ordinary
epidemiological conversions oxygen would be classified as an effect modifier, not as a cause
of fire. So will variables such as humidity, atmospheric pressure and wind velocity. They are
perceived to be assisting or hindering the fire, not causing it. From a chemical viewpoint however
the opposite is true; fire is a process of oxidation, hence oxygen is an active agent in the process,
while match striking merely creates a local rise in temperature which is an enabling condition,
not an active cause of fire. If we further look at the logical function defining the process,

Eq. (2), we find total symmetry. Moreover, examining Rothman’s “pie diagrams” which many
epidemiologists consider a faithful depiction of their conceptual framework, we find each of
Match and Oxygen labeled a “sufficient cause component” in a 2-component pie

{Oxygen,Match}.

What then governs the distinction between “cause” and “effect modifier” or “enabler” in
epidemiology? Is it the manipulability of the former, or the higher PS measure that the former
earns from prevalence considerations? I believe both considerations contribute to the distinctions
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and, certainly, we should not refrain from calling a nonmanipulable effect modifier “a cause,” if
its PS value justifies the name.

Effect modifiers, contrary to opinions of some epidemiologies (Hernan and Taubman, 2008)
do have well defined causal effects, defined by the do-operator and the model in which they are
embedded. The same goes to notions such as confounding and mediation. Whatever property the
model bestows upon a manipulated variable it also bestows upon an effect-modifier, since the two
are not marked differently in the model. The interpretation of such causal effects may not translate
into policies that directly manipulate these modifiers, yet they enter the evaluation of policies that
control the presence of these modifiers so as to regulate their consequences (Pearl, 2018).

Lastly, it is interesting to note that the capacity of an event X = 1 to produce an outcome
Y =1 can be uncovered directly from the structural equation model. We can proclaim X =1 a
“producer” of Y = 1 iff there exists a context C such that

Y(X=0,C)=0 and Y(X=1,C)=1.

For example, each of M = 1 and OX = 1 is a producer of F = 1 in the model of Eq. (2),
because OX = 1 serves as a fire-enabling context for M = 1, and M = 1 serves as a fire-enabling
context for OX = 1. Events M = 0 and OX = 0 cannot be producers of ' = 1 since no enabling
contexts exist.

One may be tempted to surmise that the property of production coincides with the presence of
an event as a component in Rothman’s “sufficient component model.” But this is not the case.
Consider the 3-pie model:

{A=0,B=1,c=1},{A=1,B=1},{A=1,B=0,C =0}

Event A = 0 appears in the first pie and, yet, it is not a producer of ¥ = 1 because no context exists
which would make Y switch from O to 1 as A switches from 1 to 0. The same is true for B =0
which appears in the 3rd pie. All other events however are producers of ¥ = 1. For example,

C =0 is a producer of Y = 1 because the context {A = 1,B = 0} will see Y switch from ¥ =0 to
Y =1 as C changes from C =1 to C = 0.
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