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Abstract: Augmenting the graphoid axioms with three additional rules enables us to handle independencies
among observed as well as counterfactual variables. The augmented set of axioms facilitates the derivation
of testable implications and ignorability conditions whenever modeling assumptions are articulated in the
language of counterfactuals.
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1 Motivation

Consider the causal Markov chain X ! Y ! Z which represents the structural equations:

y ¼ f ðx; u1Þ ð1Þ

z ¼ gðy; u2Þ ð2Þ
with u1 and u2 being omitted factors such that X; u1; u2 are mutually independent.

It is well known that, regardless of the functions f and g, this model implies the conditional indepen-
dence of X and Z given Y, written as

X??Z jY ð3Þ
This can be readily derived from the independence of X; u1, and u2, and it also follows from the d-separation
criterion, since Y blocks all paths between X and Z.

However, the causal chain can also be encoded in the language of counterfactuals by writing

YxðuÞ ¼ f ðx; u1Þ ð4Þ

ZxyðuÞ ¼ gðy; u2Þ ¼ ZyðuÞ ð5Þ
where u stands for all omitted factors (in our case u ¼ fu1; u2g) and YxðuÞ stands for the value that Y would
take in unit u had X been x. Accordingly, the functional and independence assumptions embedded in the
chain model translate into the following counterfactual statements:

Zxy ¼ Zy ð6Þ

X??Yx ð7Þ

Zxy ??ðYx;XÞ ð8Þ
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Equation (6) represents the missing arrow from X to Z, while eqs (7) and (8) convey the mutual indepen-
dence of X; u1, and u2.

1

Assume now that we are given the three counterfactual statements (6)–(8) as a specification of some
uncharted model; the question arises: Are these statements testable? In other words, is there a statistical
test conducted on the observed variables X, Y, and Z that could prove the model wrong? On the one hand,
none of the three defining conditions (6)–(8) is testable in isolation, because each invokes a counterfactual
entity. On the other hand, the fact that the chain model of eqs (1) and (2) yields the conditional indepen-
dence of eq. (3) implies that the combination of all three counterfactual statements should yield a testable
implication.

This paper concerns the derivation of testable conditions like eq. (3) from counterfactual sentences like
eqs (6)–(8). Whereas graphical models have the benefits of inferential tools such as d-separation [1, 2,
p. 335] for deriving their testable implications, counterfactual specifications must resort to the graphoid
axioms,2 which, on their own, cannot reduce subscripted expressions like eqs (6)–(8) into a subscript-free
expression like eq. (3). To unveil the testable implications of counterfactual specifications, the graphoid
axioms must be supplemented with additional inferential machinery.

We will first prove that eq. (3) indeed follows from eqs (6) to (8) and then tackle the general question of
deriving testable sentences from any given collection of counterfactual statements of the conditional indepen-
dence variety. To that end, we will augment the graphoid axioms with three auxiliary inference rules, which
will enable us to remove subscripts from variables and, if feasible, derive sentences in which all variables are
unsubscripted, that is, testable. These auxiliary rules will rely on the composition axiom [1, p. 229]

Xw ¼ x¼)Yxw ¼ Yw ð9Þ
which was shown to be sound and complete relative to recursive models [6, 7].3 In the special case of
W ¼ f;g the axiom is known as consistency rule:

X ¼ x¼)Yx ¼ Y ð10Þ
and is discussed by Robins [9] and Pearl [10].

2 Deriving testables from non-testables

In this section we will show that eq. (3) can be derived from eqs (6) to (8) with the help of eq. (9).
We first note that substituting eq. (6) into eq. (8) yields

Zy ??ðYx;XÞ ð11Þ
which is a universally quantified formula, stating that for all z, y, y′, x, x′ in the respective domains of Z, Y,
and X, the following independence condition holds

Zy ¼ z??ðYx ¼ y0;X ¼ x0Þ ð12Þ
We next note that, for the special case of x0 ¼ x, eq. (12) yields

Zy ¼ z??ðYx ¼ y0;X ¼ xÞ

1 Rules for translating graphical models to counterfactual notation are given in Pearl [1, pp. 232–4], based on the structural
semantics of counterfactuals. The rules represent the omitted factors affecting any variable, say Y, by the set of counterfactuals
YpaðYÞ, where paðYÞ stands for the parents of Y in the diagram.
2 The graphoid axioms are axioms of conditional independence, first formulated by Dawid [3] and Spohn [4]. Their connections
to graph connectivity and to other notions of “information relevance” were established by Pearl and Paz [5] and are described in
detail in Pearl [1, pp. 78–133, 2, p. 11].
3 The axiom of “composition” was first stated in Holland [8, p. 968]. Its completeness rests on a few technical conditions such
as uniqueness and effectiveness [7].
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or, using eq. (10)

Zy ¼ z??ðY ¼ y0;X ¼ xÞ for all y; z; y0; x ð13Þ
This can be written succinctly as

Zy ??ðY ;XÞ ð14Þ
Our next task is to remove the subscript from Zy. This is done in two steps. First we apply the graphoid rule
of “weak union” (i.e., W ??ðV ; SÞ¼)W ??V j S, [1, p. 11]) to obtain

Zy ??ðY ;XÞ¼) Zy ??X jY ð15Þ
Second, we explicate the components of eq. (15) and write

Zy ??ðX;YÞ¼) Zy ¼ z??X ¼ x jY ¼ y0 ð16Þ
for all y, z, x, and y′. Again, for the special case of y′ ¼ y, eq. (10) permits us to remove the subscript from
Zy and write

Z ¼ z??X ¼ x jY ¼ y for allx; y; z ð17Þ
Finally, since the last independency holds for all x; y; and z, we can write it in succinct notation as

Z??X jY
which is subscript free and coincides with the testable implication of eq. (3).

To summarize, we have shown that the subscripts in eq. (11) can be removed in two steps. First

Zy ??ðYx;XÞ¼)Zy ??ðY ;XÞ ð18Þ
and second,

Zy ??ðY ;XÞ¼) Z??X jY ð19Þ
Moreover, we see that eq. (3) follows from eq. (8) alone and does not require the exogeneity assumption
expressed in eq. (7).

3 Augmented graphoid axioms

In this section, we will identify three general rules that, when added to the graphoid axioms, will enable us
to derive testable implications without referring back to the consistency axiom of eq. (10). The three rules
are as follows:

Rule 1

V ??ðXw;Yxw; SÞ jR¼)V ??ðXw;Yw; SÞ jR ð20Þ
Rule 2

V ??R j ðXw;Yxw; SÞ¼)V ??R j ðXw;Yw; SÞ ð21Þ
Rule 3

V ??ðYxw; SÞ j ðXw;RÞ¼)V ??ðYw; SÞ j ðXw;RÞ ð22Þ
Rules 1 and 2 state that a subscript x can be removed from Yxw whenever Yxw stands in conjunction with Xw,
be it before or after the conditioning bar. In our example we had W ¼ f;g. Rule 3 states that a subscript x
can be removed from Yxw whenever Xw appears in the conditioning set. The symbols V ; S;R in eqs (20)–(22)
stand for any set of variables, observable as well as counterfactual.

The proof of these three rules follows the path that led to the derivation of eqs (18) and (19).
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For mnemonic purposes we can summarize these rules using the following shorthand:

Rule 1–2

ðXw;YxwÞ¼)ðXw;YwÞ ð23Þ
Rule 3

ðYxw jXwÞ¼)ðYw jXwÞ ð24Þ

4 Deriving ignorability relations

Unveiling testable implications is only one application of the augmented graphoid axioms in Section 3. Not
less important is the ability of these axioms to justify ignorability relations which a researcher may need for
deriving causal effect estimands [1, 8, 11, 12].4

Consider the sentence Zx ??ðYz ;XÞ which may be implied by a certain process and assume we wish to
estimate the causal effect of Z on Y, PðYz ¼ yÞ from non-experimental data. For this estimation to be
unbiased, the conditional ignorability Z??Yz jW needs to be assumed, where W is some set of observed
covariates. Using Axiom (22) we can show that W ¼ X satisfies the ignorability assumptions and, therefore,
adjustment for X will yield a bias-free estimate of the causal effect PðYz ¼ yÞ. This can be shown as follows:

Zx ??ðYz ;XÞ¼) Zx ??Yz jX
(using the graphoid rule of “weak union”) and by Rule (22) we obtain

Zx ??Yz jX¼) Z??Yz jX
We therefore can write

PðYz ¼ yÞ ¼
X

x

PðYz ¼ y jX ¼ xÞPðX ¼ xÞ

¼
X

x

PðYz ¼ y j Z ¼ z;X ¼ xÞPðX ¼ xÞ

¼
X

x

PðY ¼ y j Z ¼ z;X ¼ xÞPðX ¼ xÞ:
ð25Þ

Equation (25) is none other but the standard adjustment formula for the causal effect of Z on Y, controlling
for X.

The process can also be reversed; we start with a needed, yet unsubstantiated ignorability condition, and
we ask whether it can be derived from more fundamental conditions which are either explicit in the model or
defensible on scientific grounds. Consider, for example, an unconfounded mediation model in which treat-
ment X is randomized and assume we seek to estimate to effect of the mediator Z on the outcome Y. (The
model is depicted in Figure 1.) Operationally, we know that the ignorability condition Z??Yz jX would allow

4 Reliance on the assumptions of conditional ignorability [8, 11, 12], which are cognitively formidable, is one of the major
weaknesses of the potential outcome framework [1, pp. 350–1]. Axioms (20)–(22) permit us to derive needed ignorability
conditions from other counterfactual statements which are perhaps more transparent.

X Y

Z

Figure 1 Unconfounded mediation model implying the conditional ignorability Z??Yz jX
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us to obtain the desired effect PðYz ¼ yÞ by adjusting for X, as shown in the derivation of eq. (25). However,
lacking graphs for guidance, it is not clear whether this condition follows from the assumptions embedded in
the model; a formal proof is therefore needed. The assumptions explicit in the model take the form
(a) Xz ¼ X
(b) X??ðZx;YzxÞ
(c) Zx ??Yzx.

(a) states that Z does not affect X, (b) represents the assumption that X is randomized, and (c) stands for the
no-confounding assumption, that is, all factors affecting Z when X is held constant are independent of
those affecting Y when X and Z are held constant [1, p. 232, 343]. These factors stand precisely for the “error
terms” that enter the structural equations for Z and Y, respectively; hence, they have clear process-based
interpretations and avail themselves to plausibility judgments.

To show that the desired ignorability condition Z??Yz jX follows from (a), (b) and (c), we can use
Rule 3 (eq. 22) as follows. First, the standard graphoid axioms dictate

X??ðZx;YzxÞ and Zx ??Yzx ¼)Zx ??Yzx jX
Next, applying Rule 3 twice, together with X ¼ Xz, gives

Zx ??Yzx jX¼) Z??Yzx jX¼) Z??Yzx jXz ¼) Z??Yz jXz ¼) Z??Yz jX
which yields the desired ignorability condition.

These derivations can be skipped, of course, when we have a graphical model for guidance. The
adjustment formula (25) could then be written by inspection, since X satisfies the back-door condition relative
to Z ! Y . However, researchers who mistrust graphs and insist on doing the entire analysis by algebraic
methods would need to use Rules 1–3 to justify the ignorability condition from assumptions (a), (b) and (c).

5 Conclusions

Rules 1–3, when added to the graphoid axioms, allow us to process conditional-independence sentences
involving counterfactuals and derive both their testable implications and implications that are deemed
necessary for identifying causal effects. We conjecture that Rules 1–3 are complete in the sense that all
implications derivable from the graphoid axioms together with the consistency rule (18) are also derivable
using the graphoid axioms together with Rules 1–3.

Augmented graphoids are by no means a substitute for causal diagrams, since the complexity of finding a
derivation using graphoid axioms may be exponentially hard [13]. Diagrams, on the other hand, offer simple
graphical criteria (e.g., d-separation or back-door) for deriving testable implications and effect estimands. In
reasonably sized problems, these criteria can be verified by inspection, while, in large problems, they can be
computed in polynomial time [14, 15]. The secret of diagrams is that they embed all the graphoid axioms in
their structure and, in effect, pre-compute all their ramifications and display them in graphical patterns.
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