
Radical Empiricism and Machine Learning Research

Judea Pearl
University of California, Los Angeles

Computer Science Department
Los Angeles, CA, 90095-1596, USA
(310) 825-3243 / judea@cs.ucla.edu

Abstract

I contrast the “data fitting” vs. “data interpreting” approaches to data-science
along three dimensions: Expediency, Transparency and Explainability.“Data fitting”
is driven by the faith that the secret to rational decisions lies in the data itself. In
contrast, the data-interpreting school views data, not as a sole source of knowledge but
as an auxiliary means for interpreting reality, and “reality” stands for the processes
that generate the data.” I argue for restoring balance to data science through a task-
dependent symbiosis of fitting and interpreting, guided by the Logic of Causation.
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Introduction – Simulated Evolution versus Data Science

A speaker at a lecture that I have attended recently summarized the philosophy of machine
learning this way: “All knowledge comes from observed data, some from direct sensory
experience and some from indirect experience, transmitted to us either culturally or
genetically.”

The statement was taken as self-evident by the audience, and set the stage for a lecture
on how the nature of “knowledge” can be analyzed by examining patterns of conditional
probabilities in the data. Naturally, it invoked no notions of “external world,” “theory,”
“data generating process,” “cause and effect,” “agency,” or “mental constructs” because,
ostensibly, these notions, too, should emerge from the data if needed. In other words,
whatever concepts humans invoke in interpreting data, be their origin cultural, scientific
or genetic, can be traced to, and re-derived from the original sensory experience that has
endowed those concepts with survival value.

Viewed from artificial intelligence perspective, this data-centric philosophy offers an
attractive, if not seductive agenda for machine learning research: In order to develop
human level intelligence, we should merely trace the way our ancestors did it, and simulate
both genetic and cultural evolutions on a digital machine, taking as input all the data that
we can possibly collect. Taken to extremes, such agenda may inspire fairly futuristic and
highly ambitious scenarios: start with a simple neural network, resembling a primitive
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organism (say an Amoeba), let it interact with the environment, mutate and generate
offsprings; given enough time, it will eventually emerge with an Einstein’s level of intellect.
Indeed, barring sacred scriptures and divine revelation, where else could Einstein acquire
his knowledge, talents and intellect if not from the stream of raw data that has impinged
upon the human race since antiquities, including of course all the sensory inputs received
by more primitive organisms preceding humans.

Before asking how realistic this agenda is, let us preempt the discussion with two
observations:

1. Simulated evolution, in some form or another, is indeed the leading paradigm inspiring
most machine learning researchers today, especially those engaged in connectionism,
deep learning and neural networks technologies which deploy model-free, statistics-
based learning strategies. The impressive success of these strategies in applications
such as computer vision, voice recognition and self-driving cars has stirred up hopes in
the sufficiency and unlimited potentials of these strategies, eroding, at the same time,
interest in model-based approaches.1

2. The intellectual roots of the data-centric agenda are deeply grounded in the empiri-
cist branch of Western philosophy, according to which sense-experience is the ultimate
source of all our concepts and knowledge, with little or no role given to “innate ideas”
and “reason” as sources of knowledge (Markie, 2017). Empiricist ideas can be traced
to the ancient writings of Aristotle, but have been given prominence by the British
empiricists Francis Bacon, John Locke, George Berkeley and David Hume and, more
recently, by philosophers such as Charles Sanders Pierce, and William James. Modern
connectionism has in fact been viewed as a Triumph of Radical Empiricism over its
rationalistic rivals (Buckner, 2019; Lipton, 2015). Indeed, the ability to emulate knowl-
edge acquisition processes on digital machines offer enormously flexible testing grounds
in which philosophical theories about the balance between empiricism and innateness
can be submitted to experimental evaluation on digital machines.

The merits of testing philosophical theories notwithstanding, I have three major
reservations about the wisdom of pursuing a radical empiricist agenda for machine learning
research. I will present three arguments why empiricism should be balanced with the
principles of model-based science (Pearl, 2019), in which learning is guided by two sources
of information: (a) data and (b) man-made models of how data are generated.

I label the three arguments: (1) Expediency, (2) Transparency and (3) Explainability
and will discuss them in turns below:

1 Expediency

Evolution is too slow a process (Turing, 1950), since most mutations are useless if not
harmful, and waiting for natural selection to distinguish and filter the useful from the useless

1It will not be an exaggeration to state that societal investment in data fitting technologies, research,
education and training have been several thousands times higher than those invested in the model-based
science.
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is often un-affordable. The bulk of machine learning tasks requires speedy interpretation
of, and quick reaction to new and sparse data, too sparse to allow filtering by random
mutations. The outbreak of the COVID-19 pandemic is a perfect example of a situation
where sparse data, arriving from unreliable and heterogeneous sources required quick
interpretation and quick action, based primarily on prior models of epidemic transmission
and data production (Pearl, 2020a). In general, machine learning technology is expected to
harness a huge amount of scientific knowledge already available, combine it with whatever
data can be gathered, and solve crucial societal problems in areas such as health, education,
ecology and economics.

Even more importantly, scientific knowledge can speed up evolution by actively guiding
the selection or filtering of data and data sources. Choosing what data to consider or what
experiments to run requires hypothetical theories of what outcomes are expected from each
option, and how likely they are to improve future performance. Such expectations are
provided, for example, by causal models that predict both the outcomes of hypothetical
manipulations as well the consequences of counterfactual undoing of past events (Pearl,
2019).

2 Transparency

World knowledge, even if evolved spontaneously from raw data, must eventually be
compiled and represented in some machine form to be of any use. The purpose of compiled
knowledge is to amortize the discovery process over many inference tasks without repeating
the former. The compiled representation should then facilitate an efficient production
of answers to select set of decision problems, including questions on ways of gathering
additional data. Some representations allow for such inferences and others do not. The
Ladder of Causation (Pearl and Mackenzie, 2018; Pearl, 2019) defines formally the type
of knowledge content needed to answer questions about hypothetical interventions and/or
explanations and counterfactuals.

Knowledge compilation involves both abstraction and re-formatting. The former
allows for information loss (as in the case of graphical models summarizing numerical
equations), while the latter retains the information content and merely transform some of
the information from implicit to explicit representations. A classic example would be the
spectral representation of a signal wave form; the former is information-equivalent to the
latter, but explicitly represent certain aspects of the latter.

These considerations demand that we study the mathematical properties of compiled
representations, their inherent limitations, the kind of inferences they support, and how
effective they are in producing the answers they are expected to produce. In more concrete
terms, machine learning researchers should engage in what is currently called “causal
modelling” and use the tools and principles of causal science to guide data exploration and
data interpretation processes.
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3 Explainability

Regardless of how causal knowledge is accumulated, discovered or stored, the inferences
enabled by that knowledge are destined to be delivered to, and benefit a human user.
Today, these usages include policy evaluation, personal decisions, generating explanations,
assigning credit and blame or making general sense of the world around us. All inferences
must therefore be cast in a language that matches the way people organize their world
knowledge, namely, the language of cause and effect. It is imperative therefore that machine
learning researchers regardless of the methods they deploy for data fitting, be versed in this
user-friendly language, its grammar, its universal laws and the way humans interpret or
misinterpret the functions that machine learning algorithms discover.2

Conclusions

It is a mistake to equate the content of human knowledge with its sense-data origin. The
format in which knowledge is stored in the mind (or on a computer) and, in particular, the
balance between its implicit vs. explicit components are as important for its characterization
as its content or origin.

While radical empiricism may be a valid model of the evolutionary process, it is a bad
strategy for machine learning research. It gives a license to the data-centric thinking,
currently dominating both statistics and machine learning cultures, according to which the
secret to rational decisions lies in the data alone.

A hybrid strategy balancing “data-fitting” with “data-interpretation” better captures
the stages of knowledge compilation that the evolutionary processes entails.
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Addendum

An email exchange with Yoshua Bengio concerning the arguments above can be found on
(Pearl, 2020b).

The discussion focused on the role of causal discovery in human understanding of
their environment. Whether causal reasoning should be viewed as a variant of traditional
machine learning techniques (Schölkopf et al., 2021), perhaps as a special kind of “inductive
bias,” or the other way around, that machine learning should be viewed as a supplement to
causal inference tasks. I am, of course, of the latter opinion, advocating that even in causal
discovery tasks, what we know today about causal inference should be used as guidance to
discovery. In particular, we know what features of the world would enable or hinder the
discovery of any given structure. I summarized it succinctly saying: “Finding a needle in a
haystack is difficult, and it is probably impossible if you haven’t seen a needle before.”

Most ML researchers today have not seen a needle (i.e., a causal model drawing
inferences on interventions and counterfactuals); an educational hindrance that needs to be
corrected in order to hasten the discovery of the learning principles we aspire to uncover.
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