
C H A P T E R F O U R

Actions, Plans, and Direct Effects

He whose actions exceed his wisdom,
his wisdom shall endure.

Rabbi Hanina ben Dosa
(1st century A.D.)

Preface

So far, our analysis of causal effects has focused on primitive interventions of the form
do(x), which stood for setting the value of variable X to a fixed constant, x, and asking for
the effect of this action on the probabilities of some response variables Y. In this chap-
ter we introduce several extensions of this analysis.

First (Section 4.1), we discuss the status of actions vis-à-vis observations in proba-
bility theory, decision analysis, and causal modeling, and we advance the thesis that the
main role of causal models is to facilitate the evaluation of the effect of novel actions and
policies that were unanticipated during the construction of the model.

In Section 4.2 we extend the identification analysis of Chapter 3 to conditional actions
of the form “do x if you see z” and stochastic policies of the form “do x with proba-
bility p if you see z.” We shall see that the evaluation and identification of these more
elaborate interventions can be obtained from the analysis of primitive interventions. In
Section 4.3, we use the intervention calculus developed in Chapter 3 to give a graphical
characterization of a set of semi-Markovian models for which the causal effect of one
variable on another can be identified.

We address in Section 4.4 the problem of evaluating the effect of sequential plans –
namely, sequences of time-varying actions (some taken concurrently) designed to pro-
duce a certain outcome. We provide a graphical method of estimating the effect of such
plans from nonexperimental studies in which some of the actions are influenced by obser-
vations and former actions, some observations are influenced by the actions, and some con-
founding variables are unmeasured. We show that there is substantial advantage to ana-
lyzing a plan into its constituent actions rather than treating the set of actions as a single
entity. 

Finally, in Section 4.5 we address the question of distinguishing direct from indirect
effects. We show that direct effects can be identified by the graphical method developed
in Section 4.4. An example using alleged sex discrimination in college admission will
serve to demonstrate the assumptions needed for proper analysis of direct effects.
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4.1 INTRODUCTION

4.1.1 Actions, Acts, and Probabilities

Actions admit two interpretations: reactive and deliberative. The reactive interpretation
sees action as a consequence of an agent’s beliefs, disposition, and environmental inputs,
as in “Adam ate the apple because Eve handed it to him.” The deliberative interpretation
sees action as an option of choice in contemplated decision making, usually involving
comparison of consequences, as in “Adam was wondering what God would do if he ate
the apple.” We shall distinguish the two views by calling the first “act” and the second
“action.” An act is viewed from the outside, an action from the inside. Therefore, an
act can be predicted and can serve as evidence for the actor’s stimuli and motivations
(provided the actor is part of our model). Actions, in contrast, can neither be predicted
nor provide evidence, since (by definition) they are pending deliberation and turn into
acts once executed.

The confusion between actions and acts has led to Newcomb’s paradox (Nozick 1969)
and other oddities in the so-called evidential decision theory, which encourages decision
makers to take into consideration the evidence that an action would provide, if enacted.
This bizarre theory seems to have loomed from Jeffrey’s influential book The Logic of
Decision (Jeffrey 1965), in which actions are treated as ordinary events (rather than inter-
ventions) and, accordingly, the effects of actions are obtained through conditionalization
rather than through a mechanism-modifying operation like do(x). (See Stalnaker 1972;
Gibbard and Harper 1976; Skyrms 1980; Meek and Glymour 1994; Hitchcock 1996.)

Commonsensical decision theory1 instructs rational agents to choose the option x
that maximizes expected utility,2

where u(y) is the utility of outcome y; in contrast, “evidential decision theory” calls for
maximizing the conditional expectation

in which x is (improperly) treated as an observed proposition.
The paradoxes that emerge from this fallacy are obvious: patients should avoid going

to the doctor “to reduce the probability that one is seriously ill” (Skyrms 1980, p. 130);
workers should never hurry to work, to reduce the probability of having overslept; students

Uev(x) �a
y

P(y � x)u(y),

U(x) �a
y

P(y � do(x))u(y),

1 I purposely avoid the common title “causal decision theory” in order to suppress even the slightest
hint that any alternative, noncausal theory can be used to guide decisions.

2 Following a suggestion of Stalnaker (1972), Gibbard and Harper (1976) used in U(x),
rather than P(y ƒ do(x)), where stands for the subjunctive conditional “y if it were x.”
The semantics of the two operators are closely related (see Section 7.4), but the equation-removal
interpretation of the do(x) operator is less ambiguous and clearly suppresses inference from effect
to cause.

x �S y
P(x �S y)



should not prepare for exams, lest this would prove them behind in their studies; and so
on. In short, all remedial actions should be banished lest they increase the probability
that a remedy is indeed needed.

The oddity in this kind of logic stems from treating actions as acts that are governed
by past associations instead of as objects of free choice, as dictated by the semantics of
the do(x) operator. This “evidential” decision theory preaches that one should never ig-
nore genuine statistical evidence (in our case, the evidence that an act normally provides
regarding whether the act is needed), but decision theory proper reminds us that actions –
by their very definition – render such evidence irrelevant to the decision at hand, for ac-
tions change the probabilities that acts normally obey.3

The moral of this story can be summarized in the following mnemonic rhymes:

Whatever evidence an act might provide
On what could have caused the act,
Should never be used to help one decide
On whether to choose that same act.

Evidential decision theory was a passing episode in the philosophical literature, and
no philosopher today takes the original version of this theory seriously. Still, some re-
cent attempts have been made to revive interest in Jeffrey’s expected utility by replacing
P(y ƒ x) with P(y ƒ x, K), where K stands for various background contexts, chosen 
to suppress spurious associations (as in (3.13)) (Price 1991; Hitchcock 1996). Such at-
tempts echo an overly restrictive empiricist tradition, according to which rational agents
live and die by one source of information – statistical associations – and hence expected
utilities should admit no other operation but Bayes’s conditionalization. This tradition
is rapidly giving way to a more accommodating conception: rational agents should act
according to theories of actions; naturally, such theories demand action-specific con-
ditionalization (e.g., do(x)) while reserving Bayes’s conditionalization for representing
passive observations (see Goldszmidt and Pearl 1992; Meek and Glymour 1994; Wood-
ward 1995).

In principle, actions are not part of probability theory, and understandably so: proba-
bilities capture normal relationships in the world, whereas actions represent interventions
that perturb those relationships. It is no wonder, then, that actions are treated as foreign
entities throughout the literature on probability and statistics; they serve neither as argu-
ments of probability expressions nor as events for conditioning such expressions.

Even in the statistical decision-theoretic literature (e.g., Savage 1954), where actions
are the main target of analysis, the symbols given to actions serve merely as indices for
distinguishing one probability function from another, not as entities that stand in logi-
cal relationships to the variables on which probabilities are defined. Savage (1954, p. 14)
defined “act” as a “function attaching a consequence to each state of the world,” and
he treated a chain of decisions, one leading to another, as a single decision. However, the
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3 Such evidence is rendered irrelevant within the actor’s own probability space; in multiagent de-
cision situations, however, each agent should definitely be cognizant of how other agents might
interpret each of his pending “would-be” acts.



logic that leads us to infer the consequences of actions and strategies from more elemen-
tary considerations is left out of the formalism. For example, consider the actions: “raise
taxes,” “lower taxes,” and “raise interest rates.” The consequences of all three actions
must be specified separately, prior to analysis; none can be inferred from the others. As
a result, if we are given two probabilities, PA and PB, denoting the probabilities prevail-
ing under actions A and B, respectively, there is no way we can deduce from this input
the probability corresponding to the joint action or indeed any Boolean
combination of the propositions A and B. This means that, in principle, the impact of all
anticipated joint actions would need to be specified in advance – an insurmountable task.

The peculiar status of actions in probability theory can be seen most clearly in com-
parison to the status of observations. By specifying a probability function P(s) on the
possible states of the world, we automatically specify how probabilities should change
with every conceivable observation e, since P(s) permits us to compute (by condition-
ing on e) the posterior probabilities P(E ƒ e) for every pair of events E and e. However,
specifying P(s) tells us nothing about how probabilities should change in response to
an external action do(A). In general, if an action do(A) is to be described as a function
that takes P(s) and transforms it to PA(s), then P(s) tells us nothing about the nature of
PA(s), even when A is an elementary event for which P(A) is well defined (e.g., “raise
the temperature by 1 degree” or “turn the sprinkler on”). With the exception of the triv-
ial requirement that PA (s) be zero if s implies , a requirement that applies uniformly
to every P(s), probability theory does not tell us how PA(s) should differ from P�A(s),
where P�(s) is some other preaction probability function. Conditioning on A is clearly
inadequate for capturing this transformation, as we have seen in many examples in Chap-
ters 1 and 3 (see, e.g., Section 1.3.1), because conditioning represents passive observations
in an unchanging world, whereas actions change the world.

Drawing an analogy to visual perception, we may say that the information contained
in P(s) is analogous to a precise description of a three-dimensional object; it is sufficient
for predicting how that object will be viewed from any angle outside the object, but it
is insufficient for predicting how the object will be viewed if manipulated and squeezed
by external forces. Additional information about the physical properties of the object
must be supplied for making such predictions. By analogy, the additional information
required for describing the transformation from P(s) to PA(s) should identify those ele-
ments of the world that remain invariant under the action do(A). This extra information
is provided by causal knowledge, and the do( ) operator enables us to capture the in-
variant elements (thus defining PA(s)) by locally modifying the graph or the structural
equations. The next section will compare this device to the way actions are handled in
standard decision theory.

4.1.2 Actions in Decision Analysis

Instead of introducing new operators into probability calculus, the traditional approach
has been to attribute the differences between seeing and doing to differences in the to-
tal evidence available. Consider the statements: “the barometer reading was observed to
be x” and “the barometer reading was set to level x.” The former helps us predict the
weather, the latter does not. While the evidence described in the first statement is limited

�
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to the reading of the barometer, the second statement also tells us that the barometer was
manipulated by some agent, and conditioning on this additional evidence should render
the barometer reading irrelevant to predicting the rain.

The practical aspects of this approach amount to embracing the acting agents as vari-
ables in the analysis, constructing an augmented distribution function including the de-
cisions of those agents, and inferring the effect of actions by conditioning those decision
variables to particular values. Thus, for example, the agent manipulating the barometer
might enter the system as a decision variable “squeezing the barometer”; after incorpo-
rating this variable into the probability distribution, we could infer the impact of manipu-
lating the barometer simply by conditioning the augmented distribution on the event “the
barometer was squeezed by force y and has reached level x.”

For this conditioning method to work properly in evaluating the effect of future ac-
tions, the manipulating agent must be treated as an ideal experimenter acting out of free
will, and the associated decision variables must be treated as exogenous – causally un-
affected by other variables in the system. For example, if the augmented probability
function encodes the fact that the current owner of the barometer tends to squeeze the
barometer each time she feels arthritis pain, we will be unable to use that function for
evaluating the effects of deliberate squeezing of the barometer, even by the same owner.
Recalling the difference between acts and actions, whenever we set out to calculate the
effect of a pending action, we must ignore all mechanisms that constrained or triggered
the execution of that action in the past. Accordingly, the event “The barometer was
squeezed” must enter the augmented probability function as independent of all events
that occurred prior to the time of manipulation, similar to the way action variable F en-
tered the augmented network in Figure 3.2.

This solution corresponds precisely to the way actions are treated in decision anal-
ysis, as depicted in the literature on influence diagrams (IDs) (Howard and Matheson
1981; Shachter 1986; Pearl 1988b, chap. 6; Dawid 2002). Each decision variable is rep-
resented as an exogenous variable (a parentless node in the diagram), and its impact on
other variables is assessed and encoded in terms of conditional probabilities, similar to
the impact of any other parent node in the diagram.4

The difficulty with this approach is that we need to anticipate in advance, and rep-
resent explicitly, all actions whose effects we might wish to evaluate in the future. This
renders the modeling process unduly cumbersome, if not totally unmanageable. In cir-
cuit diagnosis, for example, it would be awkward to represent every conceivable act of
component replacement (similarly, every conceivable connection to a voltage source,
current source, etc.) as a node in the diagram. Instead, the effects of such replacements
are implicit in the circuit diagram itself and can be deduced from the diagram, given its
causal interpretation. In econometric modeling likewise, it would be awkward to repre-
sent every conceivable variant of policy intervention as a new variable in the economic
equations. Instead, the effects of such interventions can be deduced from the structural
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4 The ID literature’s insistence on divorcing the links in the ID from any causal interpretation
(Howard and Matheson 1981; Howard 1990) is at odds with prevailing practice. The causal inter-
pretation is what allows us to treat decision variables as root nodes and construct the proper deci-
sion trees for analysis; see Section 11.6 for a demonstration.



interpretation of those equations, if only we can tie the immediate effects of each policy
to the corresponding variables and parameters in the equations. The compound action
“raise taxes and lower interest rates,” for example, need not be introduced as a new vari-
able in the equations, because the effect of that action can be deduced if we have the
quantities “taxation level” and “interest rates” already represented as (either exogenous
or endogenous) variables in the equations.

The ability to predict the effect of interventions without enumerating those interven-
tions in advance is one of the main advantages we draw from causal modeling and one
of the main functions served by the notion of causation. Since the number of actions
or action combinations is enormous, they cannot be represented explicitly in the model
but rather must be indexed by the propositions that each action enforces directly. In-
direct consequences of enforcing those propositions are then inferred from the causal
relationships among the variables represented in the model. We will return to this theme
in Chapter 7 (Section 7.2.4), where we further explore the invariance assumptions that
must be met for this encoding scheme to work.

4.1.3 Actions and Counterfactuals

As an alternative to Bayesian conditioning, philosophers (Lewis 1976; Gardenfors 1988)
have studied another probability transformation called “imaging,” which was deemed
useful in the analysis of subjunctive conditionals and which more adequately represents
the transformations associated with actions. Whereas Bayes conditioning of P(s ƒ e)
transfers the entire probability mass from states excluded by e to the remaining states (in
proportion to their current probabilities, P(s)), imaging works differently: each excluded
state s transfers its mass individually to a select set of states S*(s) that are considered to
be “closest” to s (see Section 7.4.3). Although providing a more adequate and general
framework for actions (Gibbard and Harper 1976), imaging leaves the precise specifica-
tion of the selection function S*(s) almost unconstrained. Consequently, the problem of
enumerating future actions is replaced by the problem of encoding distances among states
in a way that would be both economical and respectful of common understanding of the
causal laws that operate in the domain. The second requirement is not trivial, consider-
ing that indirect ramifications of actions often result in worlds that are quite dissimilar to
the one from which we start (Fine 1975).

The difficulties associated with making the closest-world approach conform to causal
laws (Section 7.4) are circumvented in the structural approach pursued in this book by
basing the notion of interventions directly on causal mechanisms and by capitalizing on
the properties of invariance and autonomy that accompany these mechanisms. This
mechanism-modification approach can be viewed as a special instance of the closest-
world approach, where the closeness measure is crafted so as to respect the causal
mechanisms in the domain; the selection function S*(s) that ensues is represented in
(3.11) (see discussion that follows).

The operationality of this mechanism-modification semantics was demonstrated in
Chapter 3 and led to the quantitative predictions of the effects of actions, including ac-
tions and action combinations that were not contemplated during the model’s construction,
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at which time the modeller can be free to describe how Nature works, unburdened by
thoughts of external interventions. In Chapter 7 we further use the mechanism-modification
interpretation to provide semantics for counterfactual statements, as outlined in Section
1.4.4. In this chapter, we will extend the applications of the do calculus to the analysis
of complex policies and decomposition of effects.

4.2 CONDITIONAL ACTIONS AND STOCHASTIC POLICIES

The interventions considered in our analysis of identification (Sections 3.3–3.4) were
limited to actions that merely force a variable or a group of variables X to take on some
specified value x. In general (see the process control example in Section 3.2.3), inter-
ventions may involve complex policies in which a variable X is made to respond in a
specified way to some set Z of other variables – say, through a functional relationship 
x � g(z) or through a stochastic relationship whereby X is set to x with probability 
P*(x ƒ z). We will show, based on Pearl (1994b), that identifying the effect of such poli-
cies is equivalent to identifying the expression 

Let P(y ƒ do(X � g(z))) stand for the distribution (of Y) prevailing under the policy
do(X � g(z)). To compute P(y ƒ do(X � g(z))), we condition on Z and write

The equality

stems, of course, from the fact that Z cannot be a descendant of X; hence, any control ex-
erted on X can have no effect on the distribution of Z. Thus, we see that the causal effect
of a policy do(X � g (z)) can be evaluated directly from the expression of 
simply by substituting g(z) for x and taking the expectation over Z (using the observed
distribution P(z)).

This identifiability criterion for conditional policy is somewhat stricter than that for
unconditional intervention. Clearly, if a policy do(X � g (z)) is identifiable, then the sim-
ple intervention do(X � x) is identifiable as well, since we can always obtain the latter
by setting g(z) � x. The converse does not hold, however, because conditioning on Z
might create dependencies that will prevent the successful reduction of to a
hat-free expression. Kuroki and Miyakawa (1999a, 2003) present graphical criteria. 

A stochastic policy, which imposes a new conditional distribution P*(x ƒ z) for x,
can be handled in a similar manner. We regard the stochastic intervention as a random
process in which the unconditional intervention do(X � x) is enforced with probability
P*(x ƒ z). Thus, given Z � z, the intervention do(X � x) will occur with probability 

P(y � x̂, z)

P(y  �  x̂, z)

P(z � do(X � g(z))) � P(z)

� Ez 
[P(y � x̂, z)� x�g(z)].

� a
z

P(y � x̂, z)� x�g(z) P(z)

P(y � do(X � g(z))) � a
z

P(y � do(X � g(z)), z) P(z � do(X � g(z)))

P(y � x̂, z).
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P*(x ƒ z) and will produce a causal effect given by Averaging over x and
z gives the effect (on Y) of the stochastic policy P*(x ƒ z):

Because P*(x ƒ z) is specified externally, we see again that the identifiability of 
is a necessary and sufficient condition for the identifiability of any stochastic policy that
shapes the distribution of X by the outcome of Z.

Of special importance in planning is a STRIPS-like action (Fikes and Nilsson 1971)
whose immediate effects X � x depend on the satisfaction of some enabling precondi-
tion C(w) on a set W of variables. To represent such actions, we let and
set

4.3 WHEN IS THE EFFECT OF AN ACTION IDENTIFIABLE?

In Chapter 3 we developed several graphical criteria for recognizing when the effect
of one variable on another, P(y ƒ do(x)), is identifiable in the presence of unmeasured
variables. These criteria, like the back-door (Theorem 3.3.2) and front-door (Theorem
3.3.4), are special cases of a more general class of semi-Markovian models for which
repeated application of the inference rules of do-calculus (Theorem 3.4.1) will reduce

to a hat-free expression, thus rendering it identifiable. In this section we charac-
terize a wider class of models in which the causal effect is identifiable. This class
is subsumed by the one established by Tian and Pearl (2002a) in Theorem 3.7 and the
complete characterization given later in Shpitser and Pearl (2006b). It is brought here for
its intuitive appeal. 

4.3.1 Graphical Conditions for Identification

Theorem 4.3.1 characterizes a class of models in the form of four graphical condi-
tions, any one of which is sufficient for the identification of when X and Y are
singleton nodes in the graph. Theorem 4.3.2 then states that at least one of these four
conditions must hold in the model for to be identifiable in do-calculus. In
view of the completeness of do-calculus, we conclude that one of the four conditions
is necessary for any method of identification compatible with the semantics of
Definition 3.2.4.

Theorem 4.3.1 (Galles and Pearl 1995)
Let X and Y denote two singleton variables in a semi-Markovian model characterized by
graph G. A sufficient condition for the identifiability of is that G satisfy one of
the following four conditions.

P(y � x̂)

P(y � x̂)

P(y � x̂)

P(y � x̂)
P(y � x̂)

P*(x � z) � •
P(x � paX) if C(w) � false,

1 if C(w) � true and X � x,

0 if C(w) � true and X � x.

Z � W � PAX

P(y � x̂, z)

P(y) � P*(x � z) � a
x
a

z
P(y � x̂, z)P*(x � z)P(z).

P(y � x̂, z).
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1. There is no back-door path from X to Y in G; that is,
2. There is no directed path from X to Y in G. 
3. There exists a set of nodes B that blocks all back-door paths from X to Y so that

is identifiable. (A special case of this condition occurs when B consists
entirely of nondescendants of X, in which case reduces immediately to
P(b).)

4. There exist sets of nodes Z1 and Z2 such that:
(i) Z1 blocks every directed path from X to Y (i.e.,

(ii) Z2 blocks all back-door paths between Z1 and Y (i.e.,

(iii) Z2 blocks all back-door paths between X and Z1 (i.e.,
and

(iv) Z2 does not activate any back-door paths from X to Y (i.e.,
(This condition holds if (i)–(iii) are met and no member

of Z2 is a descendant of X.)
(A special case of condition 4 occurs when and there is no back-door
path from X to Z1 or from Z1 to Y.)

Proof

Condition 1. This condition follows directly from Rule 2 (see Theorem 3.4.1). If
then we can immediately change to P (y ƒ x), so the query is iden-

tifiable.
Condition 2. If there is no directed path from X to Y in G, then Hence,

by Rule 3, and so the query is identifiable.
Condition 3. If there is a set of nodes B that blocks all back-door paths from X to Y

(i.e., ), then we can expand as and, by
Rule 2, rewrite as . If the query is identifiable, then the 
original query must also be identifiable. See examples in Figure 4.1.

Condition 4. If there is a set of nodes Z1 that block all directed paths from X to Y
and a set of nodes Z2 that block all back-door paths between Y and Z1 in then we

expand and rewrite as 

using Rule 2, since all back-door paths between Z1 and Y are blocked by 

Z2 in We can reduce to using Rule 3, since 

We can rewrite as P(y ƒ z1, z2) if The

only way that this independence cannot hold is if there is a path from Y to Z1 through

X, since However, we can block this path by conditioning and(Y�� Z1  �  Z2)GXZ1
.

(Y �� Z1 � Z2)GZ1
.P(y � ẑ1, z2)Z1, Z2)GZ1X(Z2)

.
(Y�� X �P(y � ẑ1, z2)P(y � x̂, ẑ1, z2)GX.

P(y � x̂, ẑ1, z2)

P(y � x̂, z1, z2)P(y � x̂) � gZ1
, Z2 P(y � x̂, z1, z2)P(z1, z2 � x̂)

GX,

(b � x̂)P(y � x, b)P(y � x̂, b)
gb P(y � x̂, b) P(b � x̂)P(y � x̂)(Y�� X � B)GX

P(y � x̂) � P(y)
(Y�� X)GX

.

P(y � x̂)(Y�� X)GX
,

Z2 � 0

GZ1X(Z2)
).Z1, Z2)

(X��Y �

(X�� Z1 � Z2)GX
;

(Y��Z1 � Z2)GXZ1
);

(Y�� X � Z1)GZ1X
);

P(b � x̂)
P(b � x̂)

(X�� Y)GX
.
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Figure 4.1 Condition 3 of Theorem 4.3.1. In (a), the
set 5B1, B26 blocks all back-door paths from X to Y,
and In (b), the node B
blocks all back-door paths from X to Y, and 
is identifiable using Condition 4.

P(b � x̂)
P(b1, b2 � x̂) � P(b1, b2).



summing over X and so derive Now we can rewrite

as P(y ƒ z1, z2, x�) using Rule 2. The term can be rewrit-

ten as P(x� ƒ z2) using Rule 3, since Z1 is a child of X and the graph is acyclic. The query
can therefore be rewritten as and

we have Since Z2 consists of nondescendants of
X, we can rewrite as P(z2) using Rule 3. Since Z2 blocks all back-door paths

from X to Z1. we can rewrite as P(z1 ƒ x, z2) using Rule 2. The entire
query can thus be rewritten as 
See examples in Figure 4.2. n

Theorem 4.3.2

At least one of the four conditions of Theorem 4.3.1 is necessary for identifiability. That
is, if all four conditions of Theorem 4.3.1 fail in a graph G, then there exists no finite
sequence of inference rules that reduces to a hat-free expression.

A proof of Theorem 4.3.2 is given in Galles and Pearl (1995). 

4.3.2 Remarks on Efficiency

In implementing Theorem 4.3.1 as a systematic method for determining identifiability,
Conditions 3 and 4 would seem to require exhaustive search. In order to prove that Con-
dition 3 does not hold, for instance, we need to prove that no such blocking set B can
exist. Fortunately, the following theorems allow us to significantly prune the search space
so as to render the test tractable. 

Theorem 4.3.3

If is identifiable for one minimal set Bi, then is identifiable for any
other minimal set Bj. 

Theorem 4.3.3 allows us to test Condition 3 with a single minimal blocking set B. If B
meets the requirements of Condition 3, then the query is identifiable; otherwise, Condi-
tion 3 cannot be satisfied. In proving this theorem, we use the following lemma.

P(bj � x̂)P(bi � x̂)

P(y � x̂)

g z1, z2
gx� P(y � z1, z2, x�)P(x� � z2)P(z1 � x, z2)P(z2).

P(z1 � x̂, z2)

P(z2 � x̂)
P(z1, z2 � x̂) � P(z2 � x̂)P(z1 � x̂, z2).

g z1, z2
gx� P(y � z1, z2, x�)P(x� � z2)P(z1, z2 � x̂),

P(x� � ẑ1, z2)P(y � ẑ1, z2, x�)

gx�P(y � ẑ1, z2, x�)P(x� � ẑ1, z2).
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Figure 4.2 Condition 4 of Theorem 4.3.1. In (a), Z1 blocks all directed paths from X to Y, and the
empty set blocks all back-door paths from Z1 to Y in and all back-door paths from X to Z1 in G.
In (b) and (c), Z1 blocks all directed paths from X to Y, and Z2 blocks all back-door paths from Z1
to Y in and all back-door paths from X to Z1 in G.GX

GX



Lemma 4.3.4

If the query is identifiable and if a set of nodes Z lies on a directed path from X
to Y, then the query is identifiable.

Theorem 4.3.5

Let Y1 and Y2 be two subsets of nodes such that either (i) no nodes Y1 are descendants of
X or (ii) all nodes Y1 and Y2 are descendants of X and all nodes Y1 are nondescendants
of Y2. A reducing sequence for exists (per Corollary 3.4.2) if and only if
there are reducing sequences for both and 

The probability might pass the test in Theorem 4.3.1 if we apply the proce-
dure to both and but if we try to apply the test to 
then we will not find a reducing sequence of rules. Figure 4.3 shows just such an exam-
ple. Theorem 4.3.5 guarantees that, if there is a reducing sequence for 
then we should always be able to find such a sequence for both and 

by proper choice of Y1.

Theorem 4.3.6

If there exists a set Z1 that meets all of the requirements for Z1 in Condition 4, then the
set consisting of the children of X intersected with the ancestors of Y will also meet all of
the requirements for Z1 in Condition 4.

Theorem 4.3.6 removes the need to search for Z1 in Condition 4 of Theorem 4.3.1. Proofs
of Theorems 4.3.3–4.3.6 are given in Galles and Pearl (1995).

4.3.3 Deriving a Closed-Form Expression for Control Queries

The algorithm defined by Theorem 4.3.1 not only determines the identifiability of a con-
trol query but also provides a closed-form expression for in terms of the observed
probability distribution (when such a closed form exists) as follows.

Function: ClosedForm (

Input: Control query of the form 

Output: Either a closed-form expression for in terms of observed variables
only, or FAIL when the query is not identifiable.

1. If then return P(y).

2. Otherwise, if then return P(y � x).(X��Y)GX

(X��Y)GX

P(y � x̂),

P(y � x̂).

P(y � x̂)).

P(y � x̂)

x̂, y1)
P(y2 �P(y1 � x̂)

P(y1, y2 � x̂),

P(y1 � x̂, y2)P(y1 � x̂),P(y2 � x̂, y1)
P(y1, y2 � x̂)

P(y2 � x̂, y1).P(y1 � x̂)
P(y1, y2 � x̂)

P(z � x̂)
P(y � x̂)
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Figure 4.3 Theorem 4.3.1 ensures a reducing sequence for 
and although none exists for P(y1 � x̂, y2).P(y1 � x̂),

P(y2 � x̂, y1)



3. Otherwise, let B � BlockingSet (X, Y) and Pb � ClosedForm if

FAIL then return Pb.

4. Otherwise, let Z1 � Children(X) ¨ (Y ª Ancestors(Y)),
Z3 � BlockingSet(X, Z1), Z4 � BlockingSet (Z1, Y), and 
if and then return 

5. Otherwise, return FAIL.

Steps 3 and 4 invoke the function BlockingSet(X, Y), which selects a set of nodes Z that
d-separate X from Y. Such sets can be found in polynomial time (Tian et al. 1998). Step 3
contains a recursive call to the algorithm ClosedForm itself, in order to obtain an
expression for causal effect 

4.3.4 Summary

The conditions of Theorem 4.3.1 expand the boundary between the class of identify-
ing models (such as those depicted in Figure 3.8) and nonidentifying models (Figure 3.9).
These conditions lead to an effective algorithm for determining the identifiability of
control queries of the type where X is a single variable. The algorithm further
gives a closed-form expression for the causal effect in terms of estimable prob-
abilities.

Although the completeness results of Shpitser and Pearl (2006a) now offer a precise
characterization of the boundary between the identifying and nonidentifying models (see
the discussion following Theorem 3.6.1), the conditions of Theorem 4.3.2 may still be
useful on account of their simplicity and intuitive appeal.

4.4 THE IDENTIFICATION OF DYNAMIC PLANS

This section, based on Pearl and Robins (1995), concerns the probabilistic evaluation of
plans in the presence of unmeasured variables, where each plan consists of several con-
current or sequential actions and each action may be influenced by its predecessors in the
plan. We establish a graphical criterion for recognizing when the effects of a given plan
can be predicted from passive observations on measured variables only. When the cri-
terion is satisfied, a closed-form expression is provided for the probability that the plan
will achieve a specified goal.

4.4.1 Motivation

To motivate the discussion, consider an example discussed in Robins (1993, apx. 2), as de-
picted in Figure 4.4. The variables X1 and X2 stand for treatments that physicians prescribe
to a patient at two different times, Z represents observations that the second physician
consults to determine X2, and Y represents the patient’s survival. The hidden variables U1
and U2 represent, respectively, part of the patient’s history and the patient’s disposition

P(y � x̂)
P(y � x̂),

P(b � x̂).
(b � x̂)

g z1, z2
g x� P(y � z1, z2, x�)P(x� � z2)P(z1 � x, z2)P(z2).

X � Z2Y � Z1

Z2 � Z3 � Z4;

g
b
P(y � b, x)*Pb �

(P(b � x̂));
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to recover. A simple realization of such structure could be found among AIDS patients,
where Z represents episodes of PCP. This is a common opportunistic infection of AIDS
patients that (as the diagram shows) does not have a direct effect on survival Y because it
can be treated effectively, but it is an indicator of the patient’s underlying immune status
(U2), which can cause death. The terms X1 and X2 stand for bactrim, a drug that prevents
PCP (Z) and may also prevent death by other mechanisms. Doctors used the patient’s
earlier PCP history (U1) to prescribe X1, but its value was not recorded for data analysis.

The problem we face is as follows. Assume we have collected a large amount of
data on the behavior of many patients and physicians, which is summarized in the form
of (an estimated) joint distribution P of the observed four variables (X1, Z, X2, Y). A
new patient comes in, and we wish to determine the impact of the (unconditional) plan
(do(x1), do(x2)) on survival, where x1 and x2 are two predetermined dosages of bactrim
to be administered at two prespecified times.

In general, our problem amounts to that of evaluating a new plan by watching the
performance of other planners whose decision strategies are indiscernible. Physicians
do not provide a description of all inputs that prompted them to prescribe a given treat-
ment; all they communicate to us is that U1 was consulted in determining X1 and that
Z and X1 were consulted in determining X2. But U1, unfortunately, was not recorded.
In epidemiology, the plan evaluation problem is known as “time-varying treatment with
time-varying confounders” (Robins 1993). In artificial intelligence applications, the eval-
uation of such plans enables one agent to learn to act by observing the performance of
another agent, even in cases where the actions of the other agent are predicated on fac-
tors that are not visible to the leamer. If the leamer is permitted to act as well as observe,
then the task becomes much easier: the topology of the causal diagram could also be in-
ferred (at least partially), and the effects of some previously unidentifiable actions could
be determined.

As in the identification of actions (Chapter 3), the main problem in plan identifica-
tion is the control of “confounders,” that is, unobserved factors that trigger actions and
simultaneously affect the response. However, plan identification is further complicated
by the fact that some of the confounders (e.g., Z) are affected by control variables. As
remarked in Chapter 3, one of the deadliest sins in the design of statistical experiments
(Cox 1958, p. 48) is to adjust for such variables, because adjusting for a variable that
stands between an action and its consequence interferes with the very quantity we wish
to estimate – the total effect of that action. The identification method presented will cir-
cumvent such difficulties.
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Figure 4.4 The problem of evaluating the effect of the
plan (do(x1), do(x2)) on Y, from nonexperimental data
taken on X1, Z, X2, and Y.



Two other features of Figure 4.4 are worth noting. First, the quantity 
cannot be computed if we treat the control variables X1 and X2 as a single compound
variable X. The graph corresponding to such compounding would depict X as connected
to Y by both an arrow and a curved arc (through U) and thus would form a bow pat-
tern (see Figure 3.9), which is indicative of nonidentifiability. Second, the causal effect

in isolation is not identifiable because U1 creates a bow pattern around the link
which lies on a directed path from X to Y (see the discussion in Section 3.5).

The feature that facilitates the identifiability of is the identifiability of
– the causal effect of the action do(X2 � x2) alone, conditioned on the

observations available at the time of this action. This can be verified using the back-door
criterion, observing that 5X1, Z6 blocks all back-door paths between X2 and Y. Thus, the
identifiability of can be readily proven by writing

(4.1)

(4.2)

(4.3)

where (4.1) and (4.3) follow from Rule 2, and (4.2) follows from Rule 3. The subgraphs
that permit the application of these rules are shown in Figure 4.5 (in Section 4.4.3).

This derivation also highlights how conditional plans can be evaluated. Assume we
wish to evaluate the effect of the plan 5do(X1 � x1), do (X2 � g(x1, z))6. Following the
analysis of Section 4.2, we write

Again, the identifiability of this conditional plan rests on the identifiability of the ex-
pression which reduces to P(y ƒ z, x1, x2) because 5X1, Z6 blocks all 
back-door paths between X2 and Y. (See also Section 11.4.1.)

The criterion developed in the next section will enable us to recognize in general, by
graphical means, whether a proposed plan can be evaluated from the joint distribution on
the observables and, if so, to identify which covariates should be measured and how they
should be adjusted.

4.4.2 Plan Identification: Notation and Assumptions

Our starting point is a knowledge specification scheme in the form of a causal diagram,
like the one shown in Figure 4.4, that provides a qualitative summary of the analyst’s
understanding of the relevant data-generating processes.5

P(y � z, x1, x̂2),

� a
z

P(y � z, x1, x2)P(z � x1)�x2�g(x1, z).

� a
z

P(y � z, x1, do(X2 � g(x1, z)))P(z � x1)

P(y � do(X1 � x1), do(X2 � g(x1, z))) � P(y � x1, do(X2 � g(x1, z)))

� a
z

P(y � z, x1, x2)P(z � x1),

� a
z

P(y � z, x1, x̂2)P(z � x1)

P(y � x̂1, x̂2) � P(y � x1, x̂2)

P(y � x̂1, x̂2)

P(y � x1, z, x̂2)
P(y � x̂1, x̂2)

X S Z,
P(y � x̂1)

P(y � x̂1, x̂2)
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Notation

A control problem consists of a directed acyclic graph (DAG) G with vertex set V, par-
titioned into four disjoint sets V � 5X, Z, U, Y6, where

X � the set of control variables (exposures, interventions, treatments, etc.);

Z � the set of observed variables, often called covariates;

U � the set of unobserved (latent) variables; and

Y � an outcome variable.

We let the control variables be ordered X � X1, X2,…, Xn such that every Xk is a non-
descendant of Xk � j in G, and we let the outcome Y be a descendant of Xn. Let Nk
stand for the set of observed nodes that are nondescendants of any element in the set 5Xk,
Xk � 1, … , Xn6. A plan is an ordered sequence of value assignments to
the control variables, where means “Xk is set to xk.” A conditional plan is an ordered
sequence where each gk is a function from a set Zk
to Xk and where stands for the statement “set Xk to gk (zk) whenever Zk attains
the value zk.” The support Zk of each gk (zk) function must not contain any variables that
are descendants of Xk in G. 

Our problem is to evaluate an unconditional plan6 by computing
which represents the impact of the plan on the outcome variable Y. The
expression is said to be identifiable in G if, for every assign-
ment the expression can be determined uniquely from the joint distri-
bution of the observables 5X, Y, Z6. A control problem is identifiable whenever 

is identifiable. 
Our main identifiability criteria are presented in Theorems 4.4.1 and 4.4.6. These in-

voke sequential back-door tests on various subgraphs of G, from which arrows that point
to future actions are deleted. We denote by (and respectively) the graphs obtained
by deleting from G all arrows pointing to (emerging from) nodes in X. To represent the
deletion of both incoming and outgoing arrows, we use the notation Finally, the
expression stands for the probability of Y � y given that
Z � z is observed and X is held constant at x.

4.4.3 Plan Identification: The Sequential Back-Door Criterion

Theorem 4.4.1 (Pearl and Robins 1995)
The probability is identifiable if, for every there exists a set
Zk of covariates satisfying the following (sequential back-door) conditions:

(4.4)

(i.e., Zk consists of nondescendants of 5Xk, Xk � 1, … , Xn6) and

Zk � Nk,

1 � k � n,P(y � x̂1, p , x̂n)

P(y � x̂, z) � P(y, z � x̂)>P(z � x̂)
GXZ.

GX,GX

x̂1, x̂2, p , x̂n)
P(y �

(x̂1, x̂2, p , x̂n),
P(y � x̂1, x̂2, p , x̂n)

(x̂1, p , x̂n)
P(y � x̂1, x̂2, p , x̂n),

ĝk(zk)
(ĝ1(z1), ĝ2(z2), p , ĝn(zn)),

x̂k

(x̂1, x̂2, p , x̂n)

(j � 0)
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(4.5)

When these conditions are satisfied, the effect of the plan is given by

(4.6)

Before presenting its proof, let us demonstrate how Theorem 4.4.1 can be used to test the
identifiability of the control problem shown in Figure 4.4. First, we will show that 

cannot be identified without measuring Z; in other words, that the sequence 
would not satisfy conditions (4.4)–(4.5). The two d-separation tests encoded

in (4.5) are

and

The two subgraphs associated with these tests are shown in Figure 4.5. We see that
holds in but that fails to hold in . Thus, in order to pass the

test, we must have either Z1 � 5Z6 or Z2 � 5Z6; since Z is a descendant of X1, only the
second alternative satisfies (4.4). The tests applicable to the sequence
are and Figure 4.5 shows that both tests are now

satisfied, because 5X1, Z6 d-separates Y from X2 in Having satisfied conditions
(4.4)–(4.5), equation (4.6) provides a formula for the effect of plan on Y:

(4.7)

which coincides with (4.3).
The question naturally arises of whether the sequence can be iden-

tified without exhaustive search. This question will be answered in Corollary 4.4.5 and
Theorem 4.4.6.

Z1 � 0, Z2 � 5Z6

P(y � x̂1, x̂2) �a
z

P(y � z, x1, x2)P(z � x1),

(x̂1, x̂2)
GX2

.

(Y�� X2 � X1, Z)GX2
.(Y�� X1)GX1, X2

Z2 � 5Z6Z1 � 0,

GX2
(Y��X2 � X1)GX1, X2

(Y��X1)

(Y��X2 � X1)GX2
.(Y�� X1)GX1, X2

0, Z2 � 0
Z1�x̂1, x̂2)
P(y �

	 q
n

k�1
P(zk � z1, p , zk
1, x1, p , xk
1).

P(y � x̂1, p , x̂n) � a
z1, ..., zn

P(y � z1, p , zn,  x1, p , xn)

GX k, Xk � 1,p Xn
.(Y�� Xk � X1, p , Xk
1, Z1, Z2, p , Zk)
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Figure 4.5 The two subgraphs of G used in testing the identifiability of the plan in Fig-
ure 4.4.

(x̂1, x̂2)



Proof of Theorem 4.4.1
The proof given here is based on the inference rules of do-calculus (Theorem 3.4.1), which
facilitate the reduction of causal effect formulas to hat-free expressions. An alternative
proof, using latent variable elimination, is given in Pearl and Robins (1995).

Step 1. The condition implies for all Therefore, we have

This is so because no node in 5Z1, … , Zk, X1, … , Xk216 can be a descendant of any node
in 5Xk, …, Xn6. Hence, Rule 3 allows us to delete the hat variables from the expression.

Step 2. The condition in (4.5) permits us to invoke Rule 2 and write:

Thus, we have

n

Definition 4.4.2 (Admissible Sequence and G-Identifiability)
Any sequence Z1, …, Zn of covariates satisfying the conditions in (4.4)–(4.5) will be
called admissible, and any expression that is identifiable by the
criterion of Theorem 4.4.1 will be called G-identifiable.7

P(y Z x̂1, x̂2, p , x̂n)

5 a
z1, p, zn

P(y Z z1, p , zn, x1, p , xn)q
n

k51
P(zk Z z1, p , zk21, x1, p , xk21).

3 P(z1)P(z2 Z z1, x1) p (zn Z z1, x1, z2, x2, p , zn21, xn21)

5 a
zn

p a
z2

a
z1

P(y Z z1, p , zn, x1, p , xn)

o

5 a
z2

a
z1

P(y Z z1, z2, x1, x2, x̂3, p , x̂n)P(z1)P(z2) Z z1, x1)

5 a
z2

a
z1

P(y Z z1, z2, x1, x̂2, p , x̂n)P(z1)P(z2) Z z1, x1, x̂2, p , x̂n)

5 a
z1

P(y Z z1, x1, x̂2, p , x̂n)P(z1)

5 a
z1

P(y Z z1, x̂1, x̂2, p , x̂n)P(z1 Z x̂1, p , x̂n)

P(y Z x̂1, p , x̂n)

5 P(y Z z1, p , zk, x1, p , xk21, xk, x̂k11, p , x̂n).

P(y Z z1, p , zk, x1, p , xk21, x̂k, x̂k11, p , x̂n)

5 P(zk Z z1, p , zk21, x1, p , xk21).

P(zk Z z1, p , zk21, x1, p , xk21, x̂k, x̂k11, p , x̂n)

j $ k.Zk # NjZk # Nk
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blocks every “action-avoiding” back-door path from Xk to Y (see

(3.62*), page 352).
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The following corollary is immediate.

Corollary 4.4.3

A control problem is G-identifiable if and only if it has an admissible sequence.

Note that, despite the completeness of do-calculus, the property of G-identifiability is
sufficient but not necessary for general plan identifiability as defined in Section 4.4.2.
The reason is that the k th step in the reduction of (4.6) refrains from conditioning on
variables Zk that are descendants of Xk – namely, variables that may be affected by the
action do(Xk � xk). In certain causal structures, the identifiability of causal effects
requires that we condition on such variables, as demonstrated by the front-door criterion
(Theorem 3.3.4).

4.4.4 Plan Identification: A Procedure

Theorem 4.4.1 provides a declarative condition for plan identifiability. It can be used to
ratify that a proposed formula is valid for a given plan, but it does not provide an effec-
tive procedure for deriving such formulas because the choice of each Zk is not spelled out
procedurally. The possibility exists that some unfortunate choice of Zk satisfying (4.4)
and (4.5) might prevent us from continuing the reduction process even though another
reduction sequence is feasible.

This is illustrated in Figure 4.6. Here W is an admissible choice for Z1, but if we
make this choice then we will not be able to complete the reduction, since no set Z2
can be found that satisfies condition (4.5): In this example it

would be wiser to choose which satisfies both and

The obvious way to avoid bad choices of covariates, like the one illustrated in Fig-
ure 4.6, is to insist on always choosing a “minimal” Zk, namely, a set of covariates sat-
isfying (4.5) that has no proper subset satisfying (4.5). However, since there are usually
many such minimal sets (see Figure 4.7), the question remains of whether every choice
of a minimal Zk is “safe”: Can we be sure that no choice of a minimal subsequence
Z1, … , Zk will ever prevent us from finding an admissible Zk�1 when some admissible
sequence Z1*, … , Zn* exists?

(Y�� X2 � X1, 0)GX2
.

(Y�� X1 � 0)GX1, X2
Z1 � Z2 � 0,

(Y��X2 � X1, W, Z2)GX2
.
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Figure 4.6 An admissible choice Z1 � W that rules out
any admissible choice for Z2. The choice would
permit the construction of an admissible sequence 
0, Z2 � 0).

(Z1 �

Z1 � 0



The next result guarantees the safety of every minimal subsequence Z1, … , Zk and
hence provides an effective test for G-identifiability.

Theorem 4.4.4

If there exists an admissible sequence Z1*…, Zn* then, for every minimally admissible
subsequence Z1, … , Zk
1 of covariates, there is an admissible set Zk.

A proof is given in Pearl and Robins (1995).
Theorem 4.4.4 now yields an effective decision procedure for testing G-identifiability

as follows.

Corollary 4.4.5

A control problem is G-identifiable if and only if the following algorithm exits with success.

1. Set k � 1.
2. Choose any minimal satisfying (4.5).
3. If no such Zk exists then exit with failure; else set k � k � 1.
4. If k � n � 1 then exit with success; else return to step 2.

A further variant of Theorem 4.4.4 can be stated that avoids the search for minimal sets Zk.
This follows from the realization that, if an admissible sequence exists, we can rewrite
Theorem 4.4.1 in terms of an explicit sequence of covariates W1, W2, … , Wn that can
easily be identified in G.

Theorem 4.4.6

The probability is G-identifiable if and only if the following condition
holds for every 

where Wk is the set of all covariates in G that are both nondescendants of 5Xk, Xk�1, … ,
Xn6 and have either Y or Xk as descendant in Moreover, if this condition
is satisfied then the plan evaluates as

(4.8)	 q
n

k�1
P(wk � w1, p , wk
1, x1, p , xk
1).

P(y � x̂1, p , x̂n) � a
w1, p , wn

P(y � w1, p , wn, x1, p , xn)

GX k, Xk�1,p, Xn
.

GX k, Xk � 1,p , Xn
,(Y�� Xk � X1, p , Xk
 1, W1, W2, p , Wk)

1 � k � n:
P(y � x̂1, p , x̂n)

Zk � Nk
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Figure 4.7 Nonuniqueness of minimal admissible sets: Z1 and
Z�1 are each minimal and admissible, since and

both hold in .GX1, X2
(Y��X1 � Z�1)

(Y �� X1 � Z1)



A proof of Theorem 4.4.6, together with several generalizations, can be found in Pearl and
Robins (1995) and Robins (1997). Extensions to G-identifiability are reported in Kuroki
(with Miyakawa 1999a,b, 2003; with et al. 2003; with Cai 2004).

The reader should note that, although Corollary 4.4.5 and Theorem 4.4.6 are pro-
cedural in the sense of offering systematic tests for plan identifiability, they are still
order-dependent. It is quite possible that an admissible sequence exists in one order-
ing of the control variables and not in another when both orderings are consistent with
the arrows in G. The graph G in Figure 4.8 illustrates such a case. It is obtained from
Figure 4.4 by deleting the arrows and so that the two control vari-
ables (X1 and X2) can be ordered arbitrarily. The ordering (X1, X2) would still admit the
admissible sequence as before, but no admissible sequence can be found for the
ordering (X2, X1). This can be seen immediately from the graph in which (according
to (4.5) with k � 1) we need to find a set Z such that 5X2, Z6 d-separates Y from X1. No
such set exists.

The implication of this order sensitivity is that, whenever G permits several order-
ings of the control variables, all orderings need be examined before we can be sure that a
plan is not G-identifiable. The graphical criteria of Shpitser and Pearl (2006b) circum-
vents this search.

4.5 DIRECT AND INDIRECT EFFECTS

4.5.1 Direct versus Total Effects

The causal effect we have analyzed so far, measures the total effect of a vari-
able (or a set of variables) X on a response variable Y. In many cases, this quantity does
not adequately represent the target of investigation, and attention is focused instead on
the direct effect of X on Y. The term “direct effect” is meant to quantify an effect that
is not mediated by other variables in the model or, more accurately, the sensitivity of Y
to changes in X while all other factors in the analysis are held fixed. Naturally, holding
those factors fixed would sever all causal paths from X to Y with the exception of the
direct link which is not intercepted by any intermediaries.X S Y,

P(y � x̂),

GX1
,

(0, Z)

X1 S Z,X1 S X2
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Figure 4.8 Causal diagram G in which proper ordering of the control variables X1 and X2 is
important.



A classical example of the ubiquity of direct effects (see Hesslow 1976; Cartwright
1989) tells the story of a birth-control pill that is suspected of producing thrombosis in
women and, at the same time, has a negative indirect effect on thrombosis by reduc-
ing the rate of pregnancies (pregnancy is known to encourage thrombosis). In this ex-
ample, interest is focused on the direct effect of the pill because it represents a sta-
ble biological relationship that, unlike the total effect, is invariant to marital status and
other social factors that may affect women’s chances of getting pregnant or of sustaining
pregnancy.

Another class of examples involves legal disputes over race or sex discrimination in
hiring. Here, neither the effect of sex or race on applicants’ qualification nor the effect
of qualification on hiring are targets of litigation. Rather, defendants must prove that sex
and race do not directly influence hiring decisions, whatever indirect effects they might
have on hiring by way of applicant qualification.

In all these examples, the requirement of holding the mediating variables fixed must
be interpreted as (hypothetically) setting these variables to constants by physical inter-
vention, not by conditioning, or adjustment (a misguided habit that dates bach to Fisher
1935). For example, it will not be sufficient to measure the association between the birth-
control pill and thrombosis separately among pregnant and nonpregnant women and then
aggregate the results. Instead, we must perform the study among women who became
pregnant before the use of the pill and among women who prevented pregnancy by means
other than the drug. The reason is that, by conditioning on an intermediate variable
(pregnancy in the example), we may create spurious associations between X and Y even
when there is no direct effect of X on Y. This can easily be illustrated in the model

where X has no direct effect on Y. Physically holding Z constant
would permit no association between X and Y, as can be seen by deleting all arrows
entering Z. But if we were to condition on Z, a spurious association would be created
through U (unobserved) that might be construed as a direct effect of X on Y.

4.5.2 Direct Effects, Definition, and Identification

Controlling all variables in a problem is obviously a major undertaking, if not an impos-
sibility. The analysis of identification tells us under what conditions direct effects can be
estimated from nonexperimental data even without such control. Using our do(x) nota-
tion (or for short), we can express the direct effect as follows.

Definition 4.5.1 (Direct Effect)

The direct effect of X on Y is given by where SXY is the set of all endoge-
nous variables except X and Y in the system.

We see that the measurement of direct effects is ascribed to an ideal laboratory; the scien-
tist controls for all possible conditions SXY and need not be aware of the structure of the
diagram or of which variables are truly intermediaries between X and Y. Much of the ex-
perimental control can be eliminated, however, if we know the structure of the diagram.
For one thing, there is no need to actually hold all other variables constant; holding con-
stant the direct parents of Y (excluding X) should suffice. Thus, we obtain the following
equivalent definition of a direct effect.

P(y � x̂, ŝXY),

x̂

X S Z d U S Y,
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Corollary 4.5.2

The direct effect of X on Y is given by where paY\X stands for any
realization of the parents of Y, excluding X.

Clearly, if X does not appear in the equation for Y (equivalently, if X is not a parent of Y),
then defines a constant distribution on Y that is independent of x, thus
matching our understanding of “having no direct effect.” In general, assuming that X is
a parent of Y, Corollary 4.5.2 implies that the direct effect of X on Y is identifiable when-
ever is identifiable. Moreover, since the conditioning part of this expression
corresponds to a plan in which the parents of Y are the control variables, we conclude
that a direct effect is identifiable whenever the effect of the corresponding parents’ plan
is identifiable. We can now use the analysis of Section 4.4 and apply the graphical cri-
teria of Theorems 4.4.1 and 4.4.6 to the analysis of direct effects. In particular, we can
state our next theorem. 

Theorem 4.5.3

Let PAY � 5X1, …, Xk, …, Xm6. The direct effect of any Xk on Y is identifiable whenever
the conditions of Corollary 4.4.5 hold for the plan in some admissible
ordering of the variables. The direct effect is then given by (4.8).

Theorem 4.5.3 implies that if the effect of one parent of Y is identifiable, then the effect
of every parent of Y is identifiable as well. Of course, the magnitude of the effect would
differ from parent to parent, as seen in (4.8).

The following corollary is immediate.

Corollary 4.5.4

Let Xj be a parent of Y. The direct effect of Xj on Y is, in general, nonidentifiable if there
exists a confounding arc that embraces any link 

4.5.3 Example: Sex Discrimination in College Admission

To illustrate the use of this result, consider the study of Berkeley’s alleged sex bias in
graduate admission (Bickel et al. 1975), where data showed a higher rate of admission
for male applicants overall but, when broken down by departments, a slight bias toward
female applicants. The explanation was that female applicants tend to apply to the more
competitive departments, where rejection rates are high; based on this finding, Berkeley
was exonerated from charges of discrimination. The philosophical aspects of such re-
versals, known as Simpson’s paradox, will be discussed more fully in Chapter 6. Here
we focus on the question of whether adjustment for department is appropriate for as-
sessing sex discrimination in college admission. Conventional wisdom has it that such
adjustment is appropriate because “We know that applying to a popular department (one
with considerably more applicants than positions) is just the kind of thing that causes re-
jection” (Cartwright 1983, p. 38), but we will soon see that additional factors should be
considered.

Let us assume that the relevant factors in the Berkeley example are configured as in
Figure 4.9, with the following interpretation of the variables:

Xk S Y.

(x̂1, x̂2, p , x̂m)

P(y � paY)

P(y � x̂, paY \ X)

P(y � x̂, paY \ X)
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X1 � applicant’s gender;

X2 � applicant’s choice of department;

Z � applicant’s (pre-enrollment) career objectives;

Y � admission outcome (accept/reject);

U � applicant’s aptitude (unrecorded).

Note that U affects applicant’s career objective and also the admission outcome Y (say,
through verbal skills (unrecorded)).

Adjusting for department choice amounts to computing the following expression:

(4.9)

In contrast, the direct effect of X1 on Y, as given by (4.7), reads

(4.10)

It is clear that the two expressions may differ substantially. The first measures the (aver-
age) effect of sex on admission among applicants to a given department, a quantity that is
sensitive to the fact that some gender–department combinations may be associated with
high admission rates merely because such combinations are indicative of a certain apti-
tude (U) that was unrecorded. The second expression eliminates such spurious associa-
tions by separately adjusting for career objectives (Z) in each of the two genders.

To verify that (4.9) does not properly measure the direct effect of X1 on Y, we note
that the expression depends on the value of X1 even in cases where the arrow between
X1 and Y is absent. Equation (4.10), on the other hand, becomes insensitive to x1 in such
cases – an exercise that we leave for the reader to verify.8

To cast this analysis in a concrete numerical setting, let us imagine a college consist-
ing of two departments, A and B, both admitting students on the basis of qualification,
Q, alone. Let us further assume (i) that the applicant pool consists of 100 males and 100
females and (ii) that 50 applicants of each gender have high qualifications (hence are ad-
mitted) and 50 have low qualifications (hence are rejected). Clearly, this college cannot
be accused of sex discrimination.

P(y � x̂1, x̂2) �a
z

P(y � z, x1, x2)P(z � x1).

Ex2
P(y � x̂1, x2) �a

x2

P(y � x1, x2)P(x2).
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Figure 4.9 Causal relationships relevant to Berkeley’s sex
discrimination study. Adjusting for department choice (X2)
or career objective (Z) (or both) would be inappropriate in
estimating the direct effect of gender on admission. The ap-
propriate adjustment is given in (4.10).

8 Hint: Factorize using the independencies in the graph and eliminate u as in the
derivation of (3.27). Cole and Hernán (2002) present examples in epidemiology.

P(y, u, z � x̂1, x̂2)



A different result would surface, however, if we adjust for departments while ig-
noring qualifications, which amounts to using (4.9) to estimate the effect of gender on
admission. Assume that the nature of the departments is such that all and only qualified
male applicants apply to department A, while all females apply to department B (see
Table 4.1).

We see from the table that adjusting for department would falsely indicate a bias of
37.5:25 (� 3:2) in favor of female applicants. An unadjusted (sometimes called “crude”)
analysis happens to give the correct result in this example – a 50% admission rate for males
and females alike – thus exonerating the school from charges of sex discrimination.

Our analysis is not meant to imply that the Berkeley study of Bickel et al. (1975)
is defective, or that adjustment for department was not justified in that study. The pur-
pose is to emphasize that no adjustment is guaranteed to give an unbiased estimate of
causal effects, direct or indirect, absent a careful examination of the causal assumptions
that ensure identification. Theorem 4.5.3 provides us with the understanding of those as-
sumptions and with a mathematical means of expressing them. We note that if applicants’
qualifications were not recorded in the data, then the direct effect of gender on admis-
sion will not be identifiable unless we can measure some proxy variable that stands in the
same relation to Q as Z stands to U in Figure 4.9.

4.5.4 Natural Direct Effects

Readers versed in structural equation models (SEMs) will note that, in linear systems,
the direct effect is fully specified by the path coefficient attached to the
link from X to Y; therefore, the direct effect is independent of the values paY \ X at which
we hold the other parents of Y. In nonlinear systems, those values would, in general,
modify the effect of X on Y and thus should be chosen carefully to represent the target
policy under analysis. For example, the direct effect of a pill on thrombosis would most
likely be different for pregnant and nonpregnant women. Epidemiologists call such dif-
ferences “effect modification” and insist on separately reporting the effect in each sub-
population.

Although the direct effect is sensitive to the levels at which we hold the parents of
the outcome variable, it is sometimes meaningful to average the direct effect over those
levels. For example, if we wish to assess the degree of discrimination in a given school
without reference to specific departments, we should replace the controlled difference

E(Y � x̂, paY \ X)
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Table 4.1. Admission Rate among Males and Females in Each Department

Males Females Total

Admitted Applied Admitted Applied Admitted Applied

Dept. A 50 50 0 0 50 50
Dept. B 0 50 50 100 50 150

Unadjusted 50% 50% 50%
Adjusted 25% 37.5%

�



with some average of this difference over all departments. This average should measure
the increase in admission rate in a hypothetical experiment in which we instruct all
female candidates to retain their department preferences but change their gender identi-
fication (on the application form) from female to male.

Conceptually, we can define the average direct effect DEx, x9(Y) as the expected
change in Y induced by changing X from x to x9 while keeping all mediating factors con-
stant at whatever value they would have obtained under do(x). This hypothetical change,
which Robins and Greenland (1992) called “pure” and Pearl (2001c) called “natural,” is
precisely what lawmakers instruct us to consider in race or sex discrimination cases:
“The central question in any employment-discrimination case is whether the employer
would have taken the same action had the employee been of a different race (age, sex,
religion, national origin etc.) and everything else had been the same.” (In Carson versus
Bethlehem Steel Corp., 70 FEP Cases 921, 7th Cir. (1996)).

Using the parenthetical notation of equation 3.51, Pearl (2001c) gave the following
definition for the “natural direct effect”:

(4.11)

Here, Z represents all parents of Y excluding X, and the expression Y(x9, Z(x)) represents
the value that Y would attain under the operation of setting X to x9 and, simultaneously,
setting Z to whatever value it would have obtained under the setting X 5 x. We see that
DEx, x9(Y), the natural direct effect of the transition from x to x9, involves probabilities of
nested counterfactuals and cannot be written in terms of the do(x) operator. Therefore,
the natural direct effect cannot in general be identified, even with the help of ideal, con-
trolled experiments (see Robins and Greenland 1992 and Section 7.1 for intuitive expla-
nation). Pearl (2001c) has nevertheless shown that, if certain assumptions of “no con-
founding” are deemed valid,9 the natural direct effect can be reduced to

(4.12)

The intuition is simple; the natural direct effect is the weighted average of controlled
direct effects, using the causal effect P(z ƒ do(x)) as a weighing function. Under such
assumptions, the sequential back-door criteria developed in Section 4.4 for identifying
control-specific plans, , become applicable.

In particular, DEx, x9 is identifiable in Markovian models through:

(4.13)

where W satisfies the back-door criterion relative to both XSZ and (X, Z)SY. (See Pearl
(2001c; 2012b,c) and Shpitser and VanderWeele (2011).)

DEx, x¿(Y ) 5 a
zw

 [E(Y Z x¿, z, w) 2 E(Y Z x, z, w)] P(z Z x, w) P(w)

P(y Z x̂1, x̂2, p , x̂n)

DEx, x¿(Y ) 5 a
z

[E(Y Z do(x¿, z)) 2 E(Y Z do(x, z))] P(z Z do(x)).

DEx,x9(Y ) 5 E[(Y(x9, Z(x))) 2 E(Y(x)].

P(admission Z male, dept) 2 P(admission Z female, dept)
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K K KK

9 One sufficient condition is that holds for some set W of measured covariates.
See details and graphical criteria in Pearl (2001c, 2012b,c) and in Petersen et al. (2006).

Z(x) '' Y(x9, z) Z W



4.5.5 Indirect Effects and the Mediation Formula

Remarkably, the definition of the natural direct effect (4.11) can easily be turned around
and provide an operational definition for the indirect effect – a concept shrouded in
mystery and controversy, because it is impossible, using the do(x) operator, to disable
the direct link from X to Y so as to let X influence Y solely via indirect paths.

The natural indirect effect, IE, of the transition from x to x9 is defined as the expected
change in Y affected by holding X constant, at X 5 x, and changing Z to whatever value
it would have attained had X been set to X 5 x9. Formally, this reads (Pearl 2001c):

(4.14)

We see that, in general, the total effect TE of a transition is equal to the difference
between the direct effect of that transition and the indirect effect of the reverse transition:

(4.15)

In linear models, where reversal of transitions amounts to negating the signs of their
effects, (4.15) provides a formal justification for the standard additive formula

(4.16)

In the simple case of unconfounded mediators, the natural direct and indirect effects
are estimable through two regression equations called the Mediation Formula:

(4.17)

(4.18)

These provide two ubiquitous measures of mediation effects, applicable to any nonlinear
system, any distribution, and any type of variables (Pearl 2009b, 2010b).

Note that the indirect effect has clear policy-making implications. For example: in a
hiring discrimination environment, a policy maker may be interested in predicting the
gender mix in the work force if gender bias is eliminated and all applicants are treated
equally – say, the same way that males are currently treated. This quantity will be given
by the indirect effect of gender on hiring, mediated by factors such as education and
aptitude, which may be gender-dependent. See (Pearl 2001c, 2012a) for more examples.

More generally, a policy maker may be interested in the effect of motivating a select
set of subordinate employees, or of controlling the routing of messages in a network of
interacting agents. Such applications motivate the analysis of path-specific effects, that is,
the effect of X on Y through a selected set of paths (Avin et al. 2005). 

In all these cases, the policy intervention invokes the selection of signals to be sensed,
rather than variables to be fixed. Pearl (2001c) has suggested therefore that signal sens-
ing is more fundamental to the notion of causation than manipulation; the latter being but
a crude way of stimulating the former in experimental setup (see Section 11.4.5). 
A general characterization of counterfactuals that are empirically testable is given in
Chapters 7, 9, and 11, and in Shpitser and Pearl (2007).

IEx, x¿(Y ) 5 a
z

E(Y |x, z) [P(z|x¿) 2 P(z |x)]

DEx, x¿(Y ) 5 a
z

[E(Y |x¿, z) 2 E(Y | x, z)]P(z |x).

TEx,x9(Y ) 5 DEx,x9(Y) 1 IEx,x9(Y ).

5 DEx, x¿(Y ) 2 IEx¿,x(Y ).TEx, x¿(Y ) @ E(Y(x¿) 2 Y(x))

IEx, x¿(Y ) @ E[(Y(x, Z(x¿))) 2 E(Y(x))],
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